{"title":"Molecular-based characterization and bioengineering of Sorghum bicolor to enhance iron deficiency tolerance in iron-limiting calcareous soils.","authors":"Takeshi Senoura, Tomoko Nozoye, Rintaro Yuki, Mayu Yamamoto, Keisuke Maeda, Kanna Sato-Izawa, Hiroshi Ezura, Reiko Nakanishi Itai, Khurram Bashir, Hiroshi Masuda, Takanori Kobayashi, Hiromi Nakanishi, Naoko K Nishizawa","doi":"10.1007/s11103-024-01508-y","DOIUrl":"https://doi.org/10.1007/s11103-024-01508-y","url":null,"abstract":"<p><p>Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear. Here, we explored the sorghum genome to identify genes involved in iron uptake and translocation. Iron deficiency-responsive gene expression was comparable to that in other graminaceous plants. A nicotianamine synthase gene, SbNAS1, was induced in response to iron deficiency, and SbNAS1 showed enzyme activity. Sorghum secreted 2'-deoxymugineic acid and other phytosiderophores under iron deficiency, but their levels were relatively low. Intercropping of sorghum with barley or rice rescued iron deficiency symptoms of sorghum. To produce bioengineered sorghum with enhanced tolerance to iron deficiency, we introduced four cassettes into sorghum: 35S promoter-OsIRO2 for activation of iron acquisition-related gene expression, SbIRT1 promoter-Refre1/372 for enhanced ferric-chelate reductase activity, and barley IDS3, and HvNAS1 genomic fragments for enhanced production of phytosiderophores and nicotianamine. The resultant single sorghum line exhibited enhanced secretion of phytosiderophores, increased ferric-chelate reductase activity, and improved iron uptake and leaf greenness compared with non-transformants under iron-limiting conditions. Similar traits were also conferred to rice by introducing the four cassettes. Moreover, these rice lines showed similar or better tolerance in calcareous soils and increased grain iron accumulation compared with previous rice lines carrying two or three comparable cassettes. These results provide a molecular basis for the bioengineering of sorghum tolerant of low iron availability in calcareous soils.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"117"},"PeriodicalIF":3.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A loss-of-function mutation in OsTZF5 confers sensitivity to low temperature and effects the growth and development in rice.","authors":"Limin Wang, Ru Wang, Xin Cai, Huiqi Zheng, Yuxing Huang, Yuechen Li, Mingyue Cui, Mingli Lin, Huiwu Tang","doi":"10.1007/s11103-024-01513-1","DOIUrl":"10.1007/s11103-024-01513-1","url":null,"abstract":"<p><p>Rice (Oryza sativa L.) is highly sensitive to low temperatures, which can significantly reduce its production. Cold tolerance in rice is a complex trait regulated by multiple mechanisms. OsTZF5, a member of the CCCH-type zinc finger gene family in rice, has been previously reported that overexpressing OsTZF5 under the stress-responsive promoter can confer drought resistance. In this study, we showed that the loss of function mutants of OsTZF5 decreased seed germination rate and chilling tolerance in rice, and influencing normal growth and development. OsTZF5 is expressed in various parts of the rice plant, including roots, stems, leaves and inflorescences, with the highest expression levels observed in leaves. Additionally, the expression of OsTZF5 gene was influenced by various stress conditions and hormone treatments. OsTZF5 knock-out mutants exhibited significantly lower survival rates compared to the wild type (Zhonghua11, ZH11) after cold stress, as well as fewer tillers, lower thousand-grain weight, and reduced grain yield under normal conditions. Transcriptomic analyses revealed that the expression of cold stress-related genes was significantly down-regulated in OsTZF5 knock-out mutants compared to ZH11 after cold stress. This down-regulation likely contributes to the reduced cold stress tolerance observed in OsTZF5 knock-out mutants. Our findings suggest that OsTZF5 is a multifunctional gene that plays a crucial role in regulating cold stress in rice.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"116"},"PeriodicalIF":3.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnieszka Kiełbowicz-Matuk, Cezary Smaczniak, Krzysztof Mikołajczak, Anetta Kuczyńska, Xiaocai Xu, Caroline Braeuning, Paweł Krajewski
{"title":"Heat stress causes chromatin accessibility and related gene expression changes in crown tissues of barley (Hordeum vulgare).","authors":"Agnieszka Kiełbowicz-Matuk, Cezary Smaczniak, Krzysztof Mikołajczak, Anetta Kuczyńska, Xiaocai Xu, Caroline Braeuning, Paweł Krajewski","doi":"10.1007/s11103-024-01509-x","DOIUrl":"10.1007/s11103-024-01509-x","url":null,"abstract":"<p><p>Plant responses to stress caused by high temperatures involve changes occurring at the molecular, metabolic, and physiological levels. Understanding the mechanisms by which plants recognize signals to activate this response is a prerequisite for identifying key genes and signaling pathways and for obtaining heat-tolerant plants. We demonstrated the first implementation of an assay for transposase-accessible chromatin to identify open chromatin regions (OCRs) in crown tissues of barley using three genotypes carrying different allelic forms of the sdw1 gene encoding gibberellin 20-oxidase subjected to elevated temperatures. In parallel, we performed gene expression analysis, which allowed us to relate changes in chromatin state to changes in transcriptional activity. The obtained data revealed that the hypersensitive chromatin regions within the genes were more repeatable than those outside the gene intervals. We observed that prolonged exposure to high temperatures increased chromatin accessibility. Genes with OCRs in their regulatory regions were involved in stress signaling and tolerance, including calcium-dependent protein kinase, mitogen-activated protein kinase (MAPK3), receptor-like cytoplasmic kinase (RLK), TIFY domain-containing transcriptional regulator, bZIP transcription factor, and regulatory protein NPR1. The effect of genotype on gene expression was not as pronounced as that of temperature. By combining results from the differential analysis of chromatin accessibility and expression profiles, we identified genes with high temperature-induced changes in chromatin accessibility associated with expression alterations. Importantly, our data revealed a relationship between the loss of chromatin accessibility in response to heat and the downregulation of genes related to gibberellin signaling.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"115"},"PeriodicalIF":3.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Chak-Lam Lee, Fred Wang-Fat Lee
{"title":"Interpreting the complexities of the plastid genome in dinoflagellates: a mini-review of recent advances.","authors":"Lu Tang, Nora Fung-Yee Tam, Winnie Lam, Thomas Chun-Hung Lee, Steven Jing-Liang Xu, Chak-Lam Lee, Fred Wang-Fat Lee","doi":"10.1007/s11103-024-01511-3","DOIUrl":"https://doi.org/10.1007/s11103-024-01511-3","url":null,"abstract":"<p><p>Photosynthetic dinoflagellates play crucial roles in global primary production and carbon fixation. Despite their success in filling various ecological niches, numerous mysteries about their plastid evolution and plastid genomes remain unsolved. The plastid genome of dinoflagellates presents one of the most complex lineages in the biological realm, mainly due to multiple endosymbiotic plastid events in their evolutionary history. Peridinin-containing dinoflagellates possess the most reduced and fragmented genome, with only a few genes located on multiple \"minicircles\", whereas replacement plastids in dinoflagellate lineages have undergone different degrees of endosymbiotic gene transfer. Recent advancements in high-throughput sequencing have improved our understanding of plastid genomes and plastid-encoded gene expression in many dinoflagellate species. Plastid transcripts of dinoflagellates exhibit two unconventional processing pathways: the addition of a 3' poly(U) tail and substitutional RNA editing. These pathways are widely employed across dinoflagellate lineages, which are possibly retained from the ancestral peridinin plastid. This mini-review summarizes the developments in the plastid genomes of dinoflagellates and pinpoints the research areas that necessitate further exploration, aiming to provide valuable insights into plastid evolution in these fascinating and important organisms.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"114"},"PeriodicalIF":3.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alternative splicing and deletion in S-RNase confer stylar-part self-compatibility in the apple cultivar 'Vered'.","authors":"Kazuma Okada, Taku Shimizu, Shigeki Moriya, Masato Wada, Kazuyuki Abe, Yutaka Sawamura","doi":"10.1007/s11103-024-01514-0","DOIUrl":"10.1007/s11103-024-01514-0","url":null,"abstract":"<p><p>Although self-incompatibility in apples (Malus × domestica Borkh.) is regulated by a single S-locus with multiple S-haplotypes that comprise pistil S (S-RNase) and pollen S genes, it is not desirable in commercial orchards because it requires cross-pollination to achieve stable fruit production. Therefore, it is important to identify and characterize self-compatible apple cultivars. However, little is known about self-compatibility (SC) and its underlying molecular mechanisms in apples. In this study, we discovered that 'Vered', an early maturing and low chilling-requiring apple cultivar, exhibits stable SC, which was evaluated via self-pollination tests. The S-genotype of 'Vered' was designated as S<sub>24</sub>S<sub>39</sub><sup>sm</sup>. Results of genetic analysis of selfed progeny of 'Vered' revealed that SC is associated with the S<sub>39</sub><sup>sm</sup>-haplotype, and molecular analyses indicated that it is caused by alternative splicing and a 205-bp deletion in S<sub>39</sub><sup>sm</sup>-RNase. These events induce frameshifts and ultimately produce the defective S<sub>39</sub><sup>sm</sup>-RNase isoforms that lack their C-terminal half. These results enabled us to develop a 117-bp DNA marker that can be used to assist in the selection of self-compatible apples with the dysfunctional S<sub>39</sub><sup>sm</sup>-RNase. Thus, analysis of 'Vered' provided insights into the molecular mechanism of the very rare trait of natural stylar-part SC. Moreover, 'Vered' is a valuable genetic resource for breeding cultivars with SC and/or low chilling requirement in apple. Our findings contribute to a better understanding of self-compatible molecular mechanisms in apple and provide for the accelerated breeding of self-compatible apple cultivars.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"113"},"PeriodicalIF":3.9,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuhui Du, Yuanting Guo, Qianqian Li, Xiaoyan Hu, Yang Tian, Baochang Cheng, Shengji Wang, Zhiling Wang, Ruifen Ren, Zhaoshan Wang
{"title":"Transcriptome analysis of the genes and regulators involving in vitamin E biosynthesis in Elaeagnus mollis diels.","authors":"Shuhui Du, Yuanting Guo, Qianqian Li, Xiaoyan Hu, Yang Tian, Baochang Cheng, Shengji Wang, Zhiling Wang, Ruifen Ren, Zhaoshan Wang","doi":"10.1007/s11103-024-01507-z","DOIUrl":"https://doi.org/10.1007/s11103-024-01507-z","url":null,"abstract":"<p><p>Elaeagnus mollis is an important newly developing woody oil plant species and the vitamin E (VitE) content in its kernel oil is relatively high. In the present study, the VitE component content and functional genes involving in VitE biosynthesis in E. mollis kernel at different developmental stage were investigated. The VitE content increased with kernel development, reaching up to ~ 7.96 mg/g oil in kernel mature stage. The content of tocopherol was much higher than that of tocotrienol and γ-tocopherol became the dominant component. E. mollis kernel extracts had relatively strong antioxidant capacity. We identified 17 genes (16 VTEs and 1 homogentisic acid geranylgeranyl transferase (HGGT)) directly involving in VitE biosynthesis in RNA-Seq data. Phylogenetic and qRT-PCR results indicated that the annotation and reliability of the RNA-Seq were accurate. Transient overexpression of EmVTE3 and EmWRKY13 in tobacoo leaves increased and decreased the VitE content to 192.18 and 118.29 µg/g, respectively. Weighted gene co-expression analysis elucidated that the blue module showed significant correlation with tocopherol content. Co-expression network analysis revealed that 2-methyl-6-phytobenzoquinone methyltransferase (MPBQ-MT/VTE3) played a vital role and EmWRKY13 may be a key negative regulator in E. mollis VitE biosynthesis. This study not only revealed the traditional VitE biosynthesis pathway in E. mollis, but also set a solid foundation for future genetic breeding of this species.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"112"},"PeriodicalIF":3.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel NhaC Na<sup>+</sup>/H<sup>+</sup> antiporter in cyanobacteria contributes to key molecular processes for salt tolerance.","authors":"Rungaroon Waditee-Sirisattha, Hakuto Kageyama","doi":"10.1007/s11103-024-01510-4","DOIUrl":"10.1007/s11103-024-01510-4","url":null,"abstract":"<p><p>Genome mining has revealed the halotolerant cyanobacterium Halothece sp. PCC7418 harbors considerable enrichment in the ion transport gene family for putative Na<sup>+</sup>/H<sup>+</sup> antiporters. Here, we compared transcriptomic profiles of these encoding genes under various abiotic stresses and discovered that Halothece NhaC (hnhaC) was one of 24 genes drastically upregulated under salt stress. Critical roles of HnhaC in salt-stress protection and response were identified by a complementation assay using the salt-sensitive mutant Escherichia coli strain TO114. Expression of HnhaC rendered this mutant more tolerant to high concentrations of NaCl and LiCl. Antiporter activity assays showed that HnhaC protein predominantly exhibited Na<sup>+</sup>/H<sup>+</sup> and Li<sup>+</sup>/H<sup>+</sup> antiporter activities under neutral or alkaline pH conditions. Furthermore, expression of HnhaC conferred adaptive benefits onto E. coli by enabling a conditional filamentation phenotype. Dissecting the molecular mechanism of this phenotype revealed that differentially expressed genes were associated with clusters of SOS-cell division inhibitor, SOS response repair, and Z-associated proteins. Together, these results strongly indicate that HnhaC is an Na<sup>+</sup>/H<sup>+</sup> antiporter that contributes to salt tolerance. The ubiquitous existence of several Na<sup>+</sup>/H<sup>+</sup> antiporters represents a complex molecular system in halotolerant cyanobacteria, which can be deployed differently in response to growth and to environmental stresses.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"111"},"PeriodicalIF":3.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanlong Chen, Yanbo Wang, Haiyan Fu, Wei Zeng, Pan Wang, Xu Zheng, Fengshan Yang
{"title":"A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis.","authors":"Yuanlong Chen, Yanbo Wang, Haiyan Fu, Wei Zeng, Pan Wang, Xu Zheng, Fengshan Yang","doi":"10.1007/s11103-024-01506-0","DOIUrl":"10.1007/s11103-024-01506-0","url":null,"abstract":"<p><p>Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 5","pages":"110"},"PeriodicalIF":3.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Gálvez-Galván, Lorena Barea, Manuel A Garrido-Ramos, Pilar Prieto
{"title":"Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare.","authors":"Ana Gálvez-Galván, Lorena Barea, Manuel A Garrido-Ramos, Pilar Prieto","doi":"10.1007/s11103-024-01501-5","DOIUrl":"10.1007/s11103-024-01501-5","url":null,"abstract":"<p><p>In this paper, we have performed an in-depth study of the complete set of the satellite DNA (satDNA) families (i.e. the satellitomes) in the genome of two barley species of agronomic value in a breeding framework, H. chilense (H1 and H7 accessions) and H. vulgare (H106 accession), which can be useful tools for studying chromosome associations during meiosis. The study has led to the analysis of a total of 18 satDNA families in H. vulgare, 25 satDNA families in H. chilense (accession H1) and 27 satDNA families in H. chilense (accession H7) that constitute 46 different satDNA families forming 36 homology groups. Our study highlights different important contributions of evolutionary and applied interests. Thus, both barley species show very divergent satDNA profiles, which could be partly explained by the differential effects of domestication versus wildlife. Divergence derives from the differential amplification of different common ancestral satellites and the emergence of new satellites in H. chilense, usually from pre-existing ones but also random sequences. There are also differences between the two H. chilense accessions, which support genetically distinct groups. The fluorescence in situ hybridization (FISH) patterns of some satDNAs yield distinctive genetic markers for the identification of specific H. chilense or H. vulgare chromosomes. Some of the satellites have peculiar structures or are related to transposable elements which provide information about their origin and expansion. Among these, we discuss the existence of different (peri)centromeric satellites that supply this region with some plasticity important for centromere evolution. These peri(centromeric) satDNAs and the set of subtelomeric satDNAs (a total of 38 different families) are analyzed in the framework of breeding as the high diversity found in the subtelomeric regions might support their putative implication in chromosome recognition and pairing during meiosis, a key point in the production of addition/substitution lines and hybrids.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 5","pages":"108"},"PeriodicalIF":3.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving organoleptic and antioxidant properties by inhibition of novel miRstv_7 to target key genes of steviol glycosides biosynthetic pathway in Stevia rebaudiana Bertoni.","authors":"Kudsiya Ashrafi, Sadia Iqrar, Firdaus Qamar, Monica Saifi, Syed Naved Quadri, Malik Zainul Abdin","doi":"10.1007/s11103-024-01505-1","DOIUrl":"10.1007/s11103-024-01505-1","url":null,"abstract":"<p><p>Stevioside (5-10%) and rebaudioside-A (2-4%) are well-characterized diterpene glycosides found in leaves of Stevia rebaudiana known to have natural sweetening properties with zero glycaemic index. Stevioside has after-taste bitterness, whereas rebaudioside-A is sweet in taste. The ratio of rebaudioside-A to stevioside needs to be changed in order to increase the effectiveness and palatability of this natural sweetener. Plant-specific miRNAs play a significant role in the regulation of metabolic pathways for the biosynthesis of economically important secondary metabolites. In this study inhibition of miRNA through antisense technology was employed to antagonize the repressive action of miRstv_7 on its target mRNAs involved in the steviol glycosides (SGs) biosynthesis pathway. In transgenic plants expressing anti-miRstv_7, reduced expression level of endogenous miRstv_7 was observed than the non-transformed plants. As a result, enhanced expression of target genes, viz. KO (Kaurene oxidase), KAH (Kaurenoic acid-13-hydroxylase), and UGT76G1 (UDP-glycosyltransferase 76G1) led to a significant increase in the rebaudioside-A to stevioside ratio. Furthermore, metabolome analysis revealed a significant increase in total steviol glycosides content as well as total flavonoids content. Thus, our study can be utilized to generate more palatable varieties of Stevia with improved nutraceutical values including better organoleptic and antioxidant properties.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 5","pages":"109"},"PeriodicalIF":3.9,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}