{"title":"综合转录组和代谢组分析提供了水稻防御Chilo suppressalis产卵的见解。","authors":"Chen Shen, Haibo Bao, Zhengping Yu, Xiaoyan Cang, Ru Zhang, Junxian Song, Guanghua Luo, Jichao Fang","doi":"10.1007/s11103-025-01601-w","DOIUrl":null,"url":null,"abstract":"<p><p>Rice (Oryza sativa) is a crucial staple for more than half of the global population, yet it faces significant pest pressures, notably from the striped stem borer, Chilo suppressalis. This insect deposits eggs on rice surfaces, and their hatched larvae bore into stems, causing substantial yield losses. Whereas the responses of rice to larval feeding are well-documented, less is known about its reaction to C. suppressalis oviposition at the molecular and biochemical levels, despite evidence that insect egg deposition triggers various defence mechanisms in plants. In this study, next-generation RNA sequencing and comprehensive metabolomics were utilised to analyse rice leaves with and without eggs, revealing shifts in gene expression and metabolite synthesis. The effects of egg-deposited rice to oviposition behaviour were also tested. The results indicated 1,350 differentially expressed genes and 234 differential metabolites 24 h after C. suppressalis oviposition. Up-regulated genes included those involved in defence, stress responses, and secondary metabolism. Furthermore, metabolomic studies indicated increased levels of lipids, flavonoids, terpenoids, and phenolic compounds in response to oviposition, mirroring the observed responses against pathogens. Oviposition behavioural test results suggested that C. suppressalis oviposition activity was deterred by egg-laden rice. These findings enhance our understanding of induced defence mechanisms in rice against C. suppressalis at the molecular and biochemical levels, potentially guiding the development of ovicidal substances, insect-resistant rice varieties, and rice-protection strategies.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"74"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative transcriptome and metabolome analyses provide insights into rice defence against Chilo suppressalis oviposition.\",\"authors\":\"Chen Shen, Haibo Bao, Zhengping Yu, Xiaoyan Cang, Ru Zhang, Junxian Song, Guanghua Luo, Jichao Fang\",\"doi\":\"10.1007/s11103-025-01601-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice (Oryza sativa) is a crucial staple for more than half of the global population, yet it faces significant pest pressures, notably from the striped stem borer, Chilo suppressalis. This insect deposits eggs on rice surfaces, and their hatched larvae bore into stems, causing substantial yield losses. Whereas the responses of rice to larval feeding are well-documented, less is known about its reaction to C. suppressalis oviposition at the molecular and biochemical levels, despite evidence that insect egg deposition triggers various defence mechanisms in plants. In this study, next-generation RNA sequencing and comprehensive metabolomics were utilised to analyse rice leaves with and without eggs, revealing shifts in gene expression and metabolite synthesis. The effects of egg-deposited rice to oviposition behaviour were also tested. The results indicated 1,350 differentially expressed genes and 234 differential metabolites 24 h after C. suppressalis oviposition. Up-regulated genes included those involved in defence, stress responses, and secondary metabolism. Furthermore, metabolomic studies indicated increased levels of lipids, flavonoids, terpenoids, and phenolic compounds in response to oviposition, mirroring the observed responses against pathogens. Oviposition behavioural test results suggested that C. suppressalis oviposition activity was deterred by egg-laden rice. These findings enhance our understanding of induced defence mechanisms in rice against C. suppressalis at the molecular and biochemical levels, potentially guiding the development of ovicidal substances, insect-resistant rice varieties, and rice-protection strategies.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 4\",\"pages\":\"74\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01601-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01601-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrative transcriptome and metabolome analyses provide insights into rice defence against Chilo suppressalis oviposition.
Rice (Oryza sativa) is a crucial staple for more than half of the global population, yet it faces significant pest pressures, notably from the striped stem borer, Chilo suppressalis. This insect deposits eggs on rice surfaces, and their hatched larvae bore into stems, causing substantial yield losses. Whereas the responses of rice to larval feeding are well-documented, less is known about its reaction to C. suppressalis oviposition at the molecular and biochemical levels, despite evidence that insect egg deposition triggers various defence mechanisms in plants. In this study, next-generation RNA sequencing and comprehensive metabolomics were utilised to analyse rice leaves with and without eggs, revealing shifts in gene expression and metabolite synthesis. The effects of egg-deposited rice to oviposition behaviour were also tested. The results indicated 1,350 differentially expressed genes and 234 differential metabolites 24 h after C. suppressalis oviposition. Up-regulated genes included those involved in defence, stress responses, and secondary metabolism. Furthermore, metabolomic studies indicated increased levels of lipids, flavonoids, terpenoids, and phenolic compounds in response to oviposition, mirroring the observed responses against pathogens. Oviposition behavioural test results suggested that C. suppressalis oviposition activity was deterred by egg-laden rice. These findings enhance our understanding of induced defence mechanisms in rice against C. suppressalis at the molecular and biochemical levels, potentially guiding the development of ovicidal substances, insect-resistant rice varieties, and rice-protection strategies.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.