{"title":"Sbmyb111 act as a transcriptional activator of flavonoid synthesis in Scutellaria baicalensis.","authors":"Yao Xu, En Li, Weiping Cao, Yingchao Zhang, Xinfang Zhang, Zhaoyu Liu, Shanshan Cai, Jiayu Wang, Fansheng Cheng, Ruibing Chen, Ting Gao","doi":"10.1007/s11103-025-01603-8","DOIUrl":"https://doi.org/10.1007/s11103-025-01603-8","url":null,"abstract":"<p><p>Scutellaria baicalensis, a traditional medicinal plant originating in China, is widely cultivated for its therapeutic properties. The main bioactive substances in S. baicalensis are flavonoids, which exhibit extensive antibacterial and antiviral activities. However, the contents of these valuable natural product ingredients are relatively low in the plant. MYB transcription factors play crucial roles in regulating plant secondary metabolism, including flavonoid biosynthesis. While the regulation of MYB transcription factors has been extensively studied in various species, research on their role in S. baicalensis remains relatively scarce. In this study, we identified SbMYB111, belonging to the S7 subgroup of R2R3-MYB transcription factors, which functions as a transcriptional activator and is localized in the nucleus. Through heterologous overexpression of SbMYB111 in Arabidopsis thaliana and suppression expression in S. baicalensis, we demonstrated that SbMYB111 acts as a positive regulator in the biosynthesis of flavonoids. Furthermore, the yeast one-hybrid and dual-luciferase reporter gene assays validated that SbMYB111 activates the expression of SbC4H2, a key enzyme gene in the flavonoid biosynthesis pathway. This study provides a theoretical basis for understanding the transcriptional regulation mechanism of flavonoid synthesis and further developing medicinal resources of S.baicalensis.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"87"},"PeriodicalIF":3.9,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144609041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianqian Qian, Zhihang Zhuo, Wenkai Liao, Yaqin Peng, Danping Xu
{"title":"Multiomics analysis reveals candidate genes and pathway involved in isoquinoline alkaloids in Zanthoxylum armatum DC. fruit.","authors":"Qianqian Qian, Zhihang Zhuo, Wenkai Liao, Yaqin Peng, Danping Xu","doi":"10.1007/s11103-025-01605-6","DOIUrl":"https://doi.org/10.1007/s11103-025-01605-6","url":null,"abstract":"<p><p>Zanthoxylum armatum DC. fruit is a traditional spicy condiment and medicinal herb, and the prickly ash industry has developed into a pillar industry for specialty agricultural products in many regions of China. As one of the main components of Z. armatum, isoquinoline alkaloids have good biological activity and play an important role in the formation of flavor quality. In this study, we investigated the metabolites and genes involved in the biosynthesis of isoquinoline alkaloids in Z. armatum fruits during three developmental periods. A total of 1167 metabolites and 5204 differentially expressed genes were detected by combining metabolome, SMRT sequencing and Illumina sequencing. The annotation results of KEGG database showed that four metabolites (levodopa, dopamine, tyramine, and magnoflorine) and eight differentially expressed genes were involved in the biosynthesis of isoquinoline alkaloids in Z. armatum fruits. Specifically, metabolites Dopamine and Tyramine decreased with the development of Z. armatum, and the expression of the genes related to their regulation, Zardc00988 and Zardc23209, showed the same trend. This study contributes to our understanding of the biosynthesis and accumulation of Z. armatum isoquinoline alkaloids and provides a reference for the development of the medicinal value of Z. armatum.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"86"},"PeriodicalIF":3.9,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Albert L Kwansa, Arielle M Chaves, Joshua T Del Mundo, Ethan T Pierce, Esther W Gomez, Enrique D Gomez, Candace H Haigler, Yaroslava G Yingling, Alison W Roberts
{"title":"Empirical evidence that glucan-interacting amino acid side chains within the transmembrane channel collectively facilitate cellulose synthase function.","authors":"Albert L Kwansa, Arielle M Chaves, Joshua T Del Mundo, Ethan T Pierce, Esther W Gomez, Enrique D Gomez, Candace H Haigler, Yaroslava G Yingling, Alison W Roberts","doi":"10.1007/s11103-025-01615-4","DOIUrl":"10.1007/s11103-025-01615-4","url":null,"abstract":"<p><p>The fundamental mechanism of cellulose synthesis is widely conserved across Kingdoms and depends on cellulose synthases, which are processive, dual-function, family 2 glycosyltransferases (GT-2). These enzymes polymerize glucose on the cytoplasmic side of the plasma membrane and export the glucan chain to the cell surface through an integral transmembrane (TM) channel. Structural studies of active plant cellulose synthases (CESAs) have revealed interactions between the nascent glucan chain and the side chains of polar, charged, and aromatic amino acid residues that line the TM channel. However, the functional consequences of modifying these side chains have not been tested in vivo in CESAs or other processive GT-2s. To test this, we used an established in vivo assay based on genetic complementation of CESA5 in the moss, Physcomitrium patens. For accurate prediction of glucan-interacting amino acid residues, we generated a complete homotrimeric molecular model of PpCESA5 using a combination of homology and de novo modeling. All-atom molecular dynamics-based analyses of contact metrics and interaction energy identified 23 amino acid residues with high propensity to interact with the nascent glucan chain within the TM channel or on the apoplastic surface of PpCESA5. Mutating any one of 18 of these amino acid residues to alanine, thereby removing their side chains, abolished or impaired CESA function, with the strongest effects observed upon the loss of charged amino acid side chains. This provides direct evidence to support the hypothesis that multiple amino acid residues collectively maintain a smooth energy landscape within the TM channel to facilitate glucan translocation.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"85"},"PeriodicalIF":3.9,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging trends in transgene-free crop development: insights into genome editing and its regulatory overview.","authors":"Vadthya Lokya, Surender Singh, Roni Chaudhary, Alka Jangra, Siddharth Tiwari","doi":"10.1007/s11103-025-01600-x","DOIUrl":"https://doi.org/10.1007/s11103-025-01600-x","url":null,"abstract":"<p><p>Genome editing tools have revolutionized plant biology research offering unparalleled applications for genome manipulation and trait improvement in crops. Adopting such advanced biotechnological tools is inevitable to meet increasing global food demand and address challenges in food production, including (a)biotic stresses and inadequate nutritional value. Despite reliance on conventional genetic manipulation methods, the CRISPR-Cas-mediated genome editing toolbox allows precise modification of DNA/RNA in a target organism's genome. So far, CRISPR-Cas has been widely used to enhance yield, quality, stress tolerance, and nutritional value in various food crops. However, challenges such as reagent delivery in suitable explants, precise editing with minimal off-target effect, and generating transgene-free plants persist as major bottlenecks in most plant species. Components of CRISPR-Cas construct mainly Cas, guide RNA (gRNA), and selectable marker genes are often integrated into the host genome, which raises regulatory concerns. However, adapting advanced gene-editing strategies, including high-efficiency Cas endonucleases, DNA-independent RNP delivery, morphogenetic regulators, and grafting-mediated editing, are paving the way for transgene-free crop improvement while easing biosafety regulations. Further, regulatory frameworks for genome-edited crops vary globally, with several countries accepting them and others debating their legal status. Hence, the disparity in global regulatory guidelines of genome editing curbs commercialization. The current review highlights the emerging CRISPR-mediated tools or methods and their applications in developing transgene-free designer crops to harness the benefits of advanced genome manipulation.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"84"},"PeriodicalIF":3.9,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honggang Wang, Luyao Yu, Shuangshuang Li, Jin Wang, Wenjing Cheng, Siqing Zhu, Feng Shi, Yuling Tai, Yi Yuan
{"title":"Construction of yeast two-hybrid cDNA library and identification of interacting protein with McHDRa/b in Matricaria chamomilla L.","authors":"Honggang Wang, Luyao Yu, Shuangshuang Li, Jin Wang, Wenjing Cheng, Siqing Zhu, Feng Shi, Yuling Tai, Yi Yuan","doi":"10.1007/s11103-025-01606-5","DOIUrl":"https://doi.org/10.1007/s11103-025-01606-5","url":null,"abstract":"<p><p>German chamomile (Matricaria chamomilla L.) is a traditional aromatic medicinal plant, its flower contains volatile aromatic oil (essential oil). The main sesquiterpene components of the essential oil are (E)-β-farnesene, chamazulene, and α-bisabolol, these components have significant medicinal value and are used in food, cosmetics, and pharmaceuticals. However, the German chamomile genome has not yet been cataloged in any database; consequently, research on the intricate regulatory network and interaction mechanisms among proteins in German chamomile remains limited. Furthermore, no study has thus far developed a yeast cDNA library for German chamomile. Therefore, we constructed a homogenized yeast cDNA library using different tissues of German chamomile, this yeast cDNA library had a titer of 1.444 × 10<sup>8</sup> colony-forming units/mL, an average insert size of > 1,000 bp, and a positive rate of 100%. In addition, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS) that interacted with Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR) involved in the final step of the methylerythritol 4-phosphate (MEP) pathway was verified through the yeast two-hybrid (Y2H) assay and bimolecular fluorescence complementation (BiFC). At the same time, the expression pattern and function of McHDS were further analyzed. In conclusion, we successfully constructed a yeast cDNA library of German chamomile for the first time, and McHDS interacting with McHDRa/b was successfully screened, providing a reliable theoretical foundation for investigating the molecular mechanism of its coordination with McHDRa/b to regulate the biosynthesis of (E)-β-farnesene in German chamomile. Which lays the groundwork for our comprehensive understanding of the protein interaction network involved in sesquiterpene synthesis of German chamomile.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"83"},"PeriodicalIF":3.9,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144584554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hemangini Parmar, Anjana Goel, Temesgen Assefa Gelaw, Malireddy K Reddy
{"title":"Enhancing drought resilience in crops: mechanistic approaches in the face of climate challenge.","authors":"Hemangini Parmar, Anjana Goel, Temesgen Assefa Gelaw, Malireddy K Reddy","doi":"10.1007/s11103-025-01616-3","DOIUrl":"https://doi.org/10.1007/s11103-025-01616-3","url":null,"abstract":"<p><p>Enhancing drought resilience in crops has become a critical challenge in the face of global climate change, which is exacerbating the frequency and severity of drought events. This review explores mechanistic approaches aimed to improve crop drought tolerance, focusing on physiological, biochemical, and molecular mechanisms. We examine the key molecular pathways involved in drought stress responses, including the Mitogen-Activated Protein Kinase (MAPKs) signaling pathway, hormonal regulation, transcriptional control, and post-translational modifications such as ubiquitination-mediated protein degradation, and plant-microbe interaction. The review also delves into the mechanisms of drought stress tolerance, including drought escape, avoidance, and tolerance. It highlights significant traits contributing to drought resilience, such as stomatal regulation and root architecture. Furthermore, we discuss genomics and breeding approaches, including quantitative trait loci (QTL) mapping, marker-assisted selection (MAS), and cutting-edge CRISPR-Cas-based genome editing technologies. These advanced techniques, such as base editing, prime editing, and multiplexing, transform crop improvement strategies by facilitating precise and efficient modifications for enhanced drought resilience, with the success stories in crops such as rice, maize, wheat, and others. Integrating these mechanistic and technological approaches offers promising avenues for developing drought-resilient crops, ensuring food security under increasingly unpredictable climate conditions.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"82"},"PeriodicalIF":3.9,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144576107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yair Cárdenas-Conejo, Gerardo Rafael Argüello-Astorga, Daniel Alejandro García-Rodríguez, Daniel Alejandro Mendoza-Magaña, Bernardo Bañuelos-Hernández, Sara Centeno-Leija, Hugo Serrano-Posada, Laura Angélica Espinosa-Barrera, Edith Elena Uresti-Rivera, Raúl Loera-Valencia
{"title":"Endogenous geminivirus-like elements in the genus Rhododendron provide insights into the evolutionary origins of the begomovirus nuclear shuttle protein.","authors":"Yair Cárdenas-Conejo, Gerardo Rafael Argüello-Astorga, Daniel Alejandro García-Rodríguez, Daniel Alejandro Mendoza-Magaña, Bernardo Bañuelos-Hernández, Sara Centeno-Leija, Hugo Serrano-Posada, Laura Angélica Espinosa-Barrera, Edith Elena Uresti-Rivera, Raúl Loera-Valencia","doi":"10.1007/s11103-025-01609-2","DOIUrl":"https://doi.org/10.1007/s11103-025-01609-2","url":null,"abstract":"<p><p>Geminiviruses constitute a diverse group of plant viruses with small, circular single-stranded DNA genomes. While most geminiviruses possess monopartite genomes, the genus Begomovirus uniquely includes both monopartite and bipartite members. The evolutionary origin of the second component of begomovirus (DNA-B) has been a subject of considerable debate. Two primary hypotheses propose that DNA-B originated from a modified monopartite genome or through the capture of a satellite DNA. Recent discoveries of unclassified bipartite geminiviruses call for a reevaluation of these hypotheses. To address this, we investigated the evolutionary history of the begomovirus nuclear shuttle protein (NSP) through homolog searches, comparative genomics, and structural protein analyses. Our findings unambiguously demonstrated that NSP is homologous to the coat protein (CP) but originated from a CP encoded by an ancient geminivirus lineage, distinct from begomoviruses. This ancient lineage is represented by bipartite viruses integrated into plant genomes of the genus Rhododendron. These results challenge the prevailing paradigm regarding the evolutionary origin of NSP and offer new insights into the evolution of begomovirus genome architecture.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"81"},"PeriodicalIF":3.9,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144554151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Yang, Yixin Bai, Ronggui Liu, Rong Zheng, Maohua Deng, Chao Wang, Jianfeng Wang
{"title":"Contrasting roles of reactive oxygen species in pyrophosphate-induced growth inhibition under normal and salt stress conditions.","authors":"Yang Yang, Yixin Bai, Ronggui Liu, Rong Zheng, Maohua Deng, Chao Wang, Jianfeng Wang","doi":"10.1007/s11103-025-01607-4","DOIUrl":"https://doi.org/10.1007/s11103-025-01607-4","url":null,"abstract":"<p><p>Pyrophosphate (PPi) is an important chemical raw material; however, little research has focus on the effects of exogenous PPi on plant growth, especially under salt stress condition. This study investigated the impact of sodium pyrophosphate (Na-PPi) on the growth of Arabidopsis under 0 mM and 50 mM NaCl conditions. The results showed that 1 mM Na-PPi significantly inhibited the growth of Arabidopsis seedlings in 0.5 MS medium and exacerbated the growth suppression caused by NaCl stress. Na-PPi significantly increased the accumulation of compatible osmolytes in Arabidopsis under NaCl treatment. Additionally, under normal growth condition, Na-PPi treatment significantly reduced the levels of ROS in Arabidopsis; however, this trend was reversed under salt stress condition. Meanwhile, Na-PPi was found to significantly enhance the activity of antioxidant enzymes under both normal and salt stress conditions. Under salt stress, Na-PPi induces the upregulation of genes related to oxidative stress and salt/osmotic stress (such as marker for oxidative stress response protein and OSM34). Moreover, we discovered that Na-PPi significantly downregulates the expression of HAK5, which may account for the significantly decrease in K<sup>+</sup> content of Arabidopsis seedlings. Intriguingly, genetic evidence shows that SOS proteins play crucial role in the adaptation of Arabidopsis to NaCl + Na-PPi stress. These findings shed light on the role of PPi in plant growth and stress responses, which contributes to the appropriate management and disposal of PPi in practice.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"80"},"PeriodicalIF":3.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144541885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding plant responses to waterlogging: from stress signals to molecular mechanisms and their future implications.","authors":"Muhammad Mudasir, Ali Shahzad","doi":"10.1007/s11103-025-01611-8","DOIUrl":"https://doi.org/10.1007/s11103-025-01611-8","url":null,"abstract":"<p><p>Climate change and global warming drastically alter ecosystems, intensifying extreme weather events such as heavy rainfall and glacier melting, leading to increased soil flooding and threatening agriculture. Waterlogging, a direct consequence of prolonged soil saturation, severely affects plant growth by causing hypoxia, impaired nutrient uptake, photosynthesis inhibition, energy depletion, and microbiome disturbances, ultimately leading to plant mortality. Despite research progress in mitigating waterlogging stress, the molecular mechanisms underlying plant perception and their subsequent adaptive responses remain largely unclear. Recent advancements in molecular, biochemical, and multi-omics technologies have enabled significant progress in understanding the molecular mechanisms of plant responses to stress conditions. In this review, we highlight the metabolic pathways and key genes that could be targeted to enhance waterlogging tolerance and discuss how advanced techniques can be implemented to understand waterlogging responses and develop resistant cultivars. We review molecular insights into how ethylene and hypoxia signaling pathways trigger waterlogging responses and highlight key factors involved in energy metabolism and phytohormone signaling pathways, along with possible directions for further study.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"78"},"PeriodicalIF":3.9,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Cortleven, Silvia Nitschke, Venja Roeber-Terstegen, Cornelia Herrfurth, Ivo Feussner, Thomas Schmülling
{"title":"An extragenic second-site mutation in the jar1-1 mutant suppresses the response to photoperiod stress independent of jasmonic acid.","authors":"Anne Cortleven, Silvia Nitschke, Venja Roeber-Terstegen, Cornelia Herrfurth, Ivo Feussner, Thomas Schmülling","doi":"10.1007/s11103-025-01602-9","DOIUrl":"10.1007/s11103-025-01602-9","url":null,"abstract":"<p><p>Extension of the light period causes photoperiod stress in Arabidopsis thaliana. The photoperiod stress phenotype is characterized by an induction of stress and cell death marker genes, the formation of reactive oxygen species (ROS) and enhanced formation of jasmonates during the night following the extended light period. Previously, experiments had shown that the jar1-1 mutant, carrying a point mutation in the jasmonoyl-isoleucine (JA-Ile) biosynthesis gene JAR1, showed a strongly reduced stress phenotype suggesting that JA-Ile is required for the stress response. Here, we have analyzed the roles of JA-Ile and JAR1 in more detail. While jar1-1 reduced the photoperiod stress phenotype indicating that JAR1 is required for the response to photoperiod stress, mutation of the ALLENE OXIDE SYNTHETASE (AOS) jasmonate biosynthesis gene did not rescue the stress phenotype. Further, analysis of jasmonate signaling mutants did not indicate their broad resistance to photoperiod stress. Unexpectedly, other JAR1 mutant alleles like jar1-11 and fin219-2 did not alleviate the photoperiod stress phenotype. Genetic analysis revealed that a recessive unlinked second-site mutation in the jar1-1 mutant background is responsible for the suppression of the photoperiod stress response. Taken together, these results suggest that JA-Ile is less important for the response to photoperiod stress than indicated by previous results.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 4","pages":"79"},"PeriodicalIF":3.9,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}