Xiao-Lin Niu, Gang-Shuai Liu, Xiaodan Zhao, Da-Qi Fu
{"title":"SlRGLG2-SlBEL2模块调控番茄抗旱性。","authors":"Xiao-Lin Niu, Gang-Shuai Liu, Xiaodan Zhao, Da-Qi Fu","doi":"10.1007/s11103-025-01595-5","DOIUrl":null,"url":null,"abstract":"<p><p>BEL1-LIKE HOMEODOMAIN (BLH/BELL) family transcription factors play important roles in the response of plants to environmental stress. In this study, we found that the BLH/BELL transcription factor SlBEL2 affects drought tolerance in tomato plants, as SlBEL2-knockout (KO-SlBEL2) tomato plants showed enhanced drought tolerance, whereas SlBEL2-overexpression (OE-SlBEL2) tomato plants displayed impaired drought tolerance. Further research demonstrated that SlBEL2 negatively regulates drought tolerance in tomato plants by suppressing the expression of a number of genes that respond to drought. In addition, a RING E3 ligase, SlRGLG2, interacts with SlBEL2 and promotes ubiquitination degradation of SlBEL2, thus affecting the stability of the SlBEL2 protein, which in turn positively regulates drought tolerance in tomato plants. In summary, the SlRGLG2-SlBEL2 module regulates drought tolerance in tomato plants, and the aforementioned findings offer a novel viewpoint on the tomato plant's drought tolerance regulatory network.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"69"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SlRGLG2-SlBEL2 module regulates drought tolerance in tomato.\",\"authors\":\"Xiao-Lin Niu, Gang-Shuai Liu, Xiaodan Zhao, Da-Qi Fu\",\"doi\":\"10.1007/s11103-025-01595-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BEL1-LIKE HOMEODOMAIN (BLH/BELL) family transcription factors play important roles in the response of plants to environmental stress. In this study, we found that the BLH/BELL transcription factor SlBEL2 affects drought tolerance in tomato plants, as SlBEL2-knockout (KO-SlBEL2) tomato plants showed enhanced drought tolerance, whereas SlBEL2-overexpression (OE-SlBEL2) tomato plants displayed impaired drought tolerance. Further research demonstrated that SlBEL2 negatively regulates drought tolerance in tomato plants by suppressing the expression of a number of genes that respond to drought. In addition, a RING E3 ligase, SlRGLG2, interacts with SlBEL2 and promotes ubiquitination degradation of SlBEL2, thus affecting the stability of the SlBEL2 protein, which in turn positively regulates drought tolerance in tomato plants. In summary, the SlRGLG2-SlBEL2 module regulates drought tolerance in tomato plants, and the aforementioned findings offer a novel viewpoint on the tomato plant's drought tolerance regulatory network.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 3\",\"pages\":\"69\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01595-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01595-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SlRGLG2-SlBEL2 module regulates drought tolerance in tomato.
BEL1-LIKE HOMEODOMAIN (BLH/BELL) family transcription factors play important roles in the response of plants to environmental stress. In this study, we found that the BLH/BELL transcription factor SlBEL2 affects drought tolerance in tomato plants, as SlBEL2-knockout (KO-SlBEL2) tomato plants showed enhanced drought tolerance, whereas SlBEL2-overexpression (OE-SlBEL2) tomato plants displayed impaired drought tolerance. Further research demonstrated that SlBEL2 negatively regulates drought tolerance in tomato plants by suppressing the expression of a number of genes that respond to drought. In addition, a RING E3 ligase, SlRGLG2, interacts with SlBEL2 and promotes ubiquitination degradation of SlBEL2, thus affecting the stability of the SlBEL2 protein, which in turn positively regulates drought tolerance in tomato plants. In summary, the SlRGLG2-SlBEL2 module regulates drought tolerance in tomato plants, and the aforementioned findings offer a novel viewpoint on the tomato plant's drought tolerance regulatory network.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.