Roles of rubber elongation factor and small rubber particle protein in rubber particles.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fengyan Fang, Boxuan Yuan, Lixia He, Minmin He, Xuchu Wang
{"title":"Roles of rubber elongation factor and small rubber particle protein in rubber particles.","authors":"Fengyan Fang, Boxuan Yuan, Lixia He, Minmin He, Xuchu Wang","doi":"10.1007/s11103-025-01593-7","DOIUrl":null,"url":null,"abstract":"<p><p>Rubber elongation factor (REF) and small rubber particle protein (SRPP) are critical components in the biosynthesis of natural rubber in Hevea species, with both proteins playing significant roles in regulating stress responses. Despite recent advancements in understanding their regulatory mechanisms, a comprehensive analysis of their functional roles, gene evolution, expression patterns, and biological regulation is still needed. This review consolidates current knowledge on REF and SRPP, highlighting their evolutionary history and the influence of environmental factors and hormonal signals on their transcriptional regulation. Additionally, it explores the potential of REF and SRPP in plant breeding, not only for improving rubber-producing plants but also for enhancing stress tolerance in non-rubber-producing species. The review emphasizes the need for further research into the molecular mechanisms driving REF and SRPP function, including their involvement in stress resilience and interactions with other proteins in rubber biosynthesis. By synthesizing the latest findings, this work aims to inform future breeding strategies and genetic engineering efforts, with a particular focus on improving rubber production efficiency and increasing plant resistance to abiotic stresses such as drought and salinity. This review provides valuable insights for optimizing the utilization of REF and SRPP in future crop improvement programs.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"71"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01593-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rubber elongation factor (REF) and small rubber particle protein (SRPP) are critical components in the biosynthesis of natural rubber in Hevea species, with both proteins playing significant roles in regulating stress responses. Despite recent advancements in understanding their regulatory mechanisms, a comprehensive analysis of their functional roles, gene evolution, expression patterns, and biological regulation is still needed. This review consolidates current knowledge on REF and SRPP, highlighting their evolutionary history and the influence of environmental factors and hormonal signals on their transcriptional regulation. Additionally, it explores the potential of REF and SRPP in plant breeding, not only for improving rubber-producing plants but also for enhancing stress tolerance in non-rubber-producing species. The review emphasizes the need for further research into the molecular mechanisms driving REF and SRPP function, including their involvement in stress resilience and interactions with other proteins in rubber biosynthesis. By synthesizing the latest findings, this work aims to inform future breeding strategies and genetic engineering efforts, with a particular focus on improving rubber production efficiency and increasing plant resistance to abiotic stresses such as drought and salinity. This review provides valuable insights for optimizing the utilization of REF and SRPP in future crop improvement programs.

橡胶伸长因子和小橡胶颗粒蛋白在橡胶颗粒中的作用。
橡胶伸长因子(Rubber伸长factor, REF)和小橡胶颗粒蛋白(small Rubber particle protein, SRPP)是橡胶树天然橡胶生物合成过程中的关键成分,两者在调节胁迫反应中发挥重要作用。尽管近年来对其调控机制的了解有所进展,但仍需要对其功能作用、基因进化、表达模式和生物学调控进行全面分析。本文综述了REF和SRPP的现有知识,重点介绍了它们的进化历史以及环境因素和激素信号对其转录调控的影响。此外,本文还探讨了REF和SRPP在植物育种中的潜力,不仅可以改善产胶植物,还可以提高非产胶植物的抗逆性。这篇综述强调需要进一步研究REF和SRPP功能的分子机制,包括它们在橡胶生物合成中参与应力恢复和与其他蛋白质的相互作用。通过综合最新发现,这项工作旨在为未来的育种策略和基因工程工作提供信息,特别关注提高橡胶生产效率和增强植物对干旱和盐度等非生物胁迫的抗性。该综述为今后作物改良中REF和SRPP的优化利用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信