Pharmaceutical Development and Technology最新文献

筛选
英文 中文
Thymoquinone loaded lipid nanocapsule dispersion: two methods of preparation, characterization and in vitro evaluations for oral administration. 百里醌载脂质纳米胶囊分散体的制备、表征及体外口服评价。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI: 10.1080/10837450.2024.2448616
Mouna Selmi, Amine Trabelsi, Nolwenn Lautram, David Dallerac, Guillaume Lefebvre, Leila Chekir Ghedira, Emilie Roger
{"title":"Thymoquinone loaded lipid nanocapsule dispersion: two methods of preparation, characterization and <i>in vitro</i> evaluations for oral administration.","authors":"Mouna Selmi, Amine Trabelsi, Nolwenn Lautram, David Dallerac, Guillaume Lefebvre, Leila Chekir Ghedira, Emilie Roger","doi":"10.1080/10837450.2024.2448616","DOIUrl":"10.1080/10837450.2024.2448616","url":null,"abstract":"<p><p>This work explores two methods to encapsulate Thymoquinone (TQ) into lipid nanocapsules (LNCs) for oral administration. TQ was added during the phase inversion temperature method (TQ-LNCs-1) or to unload LNCs dispersion (TQ-LNCs-2). LNCs were evaluated for mean diameter, polydispersity index (PDI), ζ-potential, drug loading (DL), drop tensiometer, storage stability, <i>in vitro</i> stability in simulated gastrointestinal fluids (SGIF), and intestinal permeability across Caco-2 cells. TQ-LNCs-1 and TQ-LNCs-2 produced NPs (58.3 ± 3.7 nm and 61.5 ± 3.5 nm, respectively), with a DL of 8.7 ± 0.2 and 7.7 ± 0.6 mg/mL of suspension, respectively. For both, less than 14% of TQ was released in SGIF, and a minor increase in TQ intestinal permeability with LNCs compared to free TQ was observed. TQ-LNCs represented a promising formulation for oral delivery of TQ. Encapsulation of TQ by adding it at LNCs dispersion can be extended for further drugs.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"69-78"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmaceutical excipients in pediatric and geriatric drug formulations: safety, efficacy, and regulatory perspectives. 儿科和老年药物配方中的药物赋形剂:安全性、有效性和监管观点。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-01-01 Epub Date: 2024-12-14 DOI: 10.1080/10837450.2024.2441181
Tansel Comoglu, Emine Dilek Ozyilmaz
{"title":"Pharmaceutical excipients in pediatric and geriatric drug formulations: safety, efficacy, and regulatory perspectives.","authors":"Tansel Comoglu, Emine Dilek Ozyilmaz","doi":"10.1080/10837450.2024.2441181","DOIUrl":"10.1080/10837450.2024.2441181","url":null,"abstract":"<p><p>Pharmaceutical excipients are indispensable components of drug formulations, playing critical roles in enhancing stability, improving bioavailability, and ensuring patient compliance. In pediatric and geriatric populations, the selection of these excipients becomes even more crucial due to their unique physiological and pharmacokinetic profiles, as well as age-specific formulation requirements. This review examines the functions, safety considerations, and potential adverse effects of excipients in these vulnerable groups. It addresses the challenges of drug formulation for neonates, infants, and elderly patients, including immature enzyme systems, polypharmacy, and swallowing difficulties. The impact of excipient-excipient and excipient-active pharmaceutical ingredient (API) interactions on drug stability, efficacy, and safety is also highlighted. For instance, the effects of polyethylene glycol (PEG) in patients with impaired renal function and destabilizing interactions between surfactants and protein-based APIs are analyzed. Additionally, current guidelines and safety requirements from regulatory bodies such as the FDA, EMA, and ICH are reviewed. This paper emphasizes the importance of carefully selecting excipients that balance functionality and safety to ensure therapeutic efficacy while minimizing risks for pediatric and geriatric patients. Future directions in excipient development and formulation strategies are also discussed to improve treatment outcomes for these populations.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-9"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indomethacin-encapsulated PLGA nanoparticles improve therapeutic efficacy by increasing apoptosis and reducing motility in glioblastoma cells. 吲哚美辛包封的PLGA纳米颗粒通过增加胶质母细胞瘤细胞的凋亡和降低细胞运动来提高治疗效果。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI: 10.1080/10837450.2024.2448333
Ferhat Bostancı, Aslıhan Şengelen, Yunus Aksüt, Eren Yıldırım, İrem Öğütcü, Oğuz Yücel, Serkan Emik, Gülten Gürdağ, Murat Pekmez
{"title":"Indomethacin-encapsulated PLGA nanoparticles improve therapeutic efficacy by increasing apoptosis and reducing motility in glioblastoma cells.","authors":"Ferhat Bostancı, Aslıhan Şengelen, Yunus Aksüt, Eren Yıldırım, İrem Öğütcü, Oğuz Yücel, Serkan Emik, Gülten Gürdağ, Murat Pekmez","doi":"10.1080/10837450.2024.2448333","DOIUrl":"10.1080/10837450.2024.2448333","url":null,"abstract":"<p><p>Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue. Nanomaterials are crucial tools for overcoming solubility problems and facilitating drug delivery. Herein, a polymeric nanoparticle system, poly(lactic-co-glycolic acid) (PLGA) was used to encapsulate IND. Although PLGA is an FDA-approved copolymer for drug delivery, no trials with IND-loaded PLGA-NPs have been conducted to treat brain tumors. Encapsulation success was revealed by DLS, zeta potential, TEM, and FTIR analysis; IND/PLGA-NPs had nanoscale particle size (160.6 nm), narrow size distribution (0.230, PDI), and good stability (-23.9 mV). Fluorescence imaging showed that PLGA-NPs can penetrate U-87MG cells. Short-term/one-hour treatment with bound-IND increased the free-IND effect in gliomas by ⁓10 times/48h and 12.39 times/72h. Even against long-term exposure to IND, IND/PLGA-NP treatment revealed a highly marked result; the IC<sub>50</sub> value of bound-IND (treatment-time:1h, analysis at 48h) was ∼200µM, IC<sub>50</sub> value of free-IND (treatment-time:48h) was ∼390µM. Furthermore, IND/PLGA-NPs' anticancer activity (100 µM of IND/1h, analysis at 48h) was also supported by induced apoptosis and reduced migration/colony formation in glioma cells. All evidence suggests that IND/PLGA-NPs may be a potentially promising agent for treating gliomas.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"25-36"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of poly(ethylene glycol)-b-poly(tert-butyl methacrylate) micelles as potential nanocarriers for donepezil. 作为多奈哌齐潜在纳米载体的聚环氧乙烷-b-聚甲基丙烯酸叔丁酯胶束的制备与表征
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-14 DOI: 10.1080/10837450.2024.2423833
Gizem İğdeli, Laura Fritzen, Claus U Pietrzik, Binnur Aydogan Temel
{"title":"Preparation and characterization of poly(ethylene glycol)-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) micelles as potential nanocarriers for donepezil.","authors":"Gizem İğdeli, Laura Fritzen, Claus U Pietrzik, Binnur Aydogan Temel","doi":"10.1080/10837450.2024.2423833","DOIUrl":"10.1080/10837450.2024.2423833","url":null,"abstract":"<p><p>Polymeric micelles were prepared for the delivery of donepezil, a leading Alzheimer's disease drug, to enhance its transport across the blood-brain barrier (BBB). Poly(ethylene glycol)-<i>b</i>-poly(<i>tert</i>-butyl methacrylate) amphiphilic block copolymers were synthesized <i>via</i> reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by gel permeation chromatography and nuclear magnetic resonance spectroscopy. Empty and donepezil loaded polymer micelles were formed using the dialysis method and characterized by dynamic light scattering and transmission electron microscopy. Drug loading efficiency and release behavior were monitored using UV/Vis spectroscopy, and cytotoxicity was evaluated <i>via</i> colorimetric tests and impedance measurements. Additionally, the permeability of the nanocarriers across an <i>in vitro</i> BBB culture model was assessed. Drug-loaded micelles demonstrated similar permeability to free donepezil but offered sustained release and improved stability. This micellar delivery system holds significant potential for improving therapeutic outcomes in Alzheimer's treatment by enhancing donepezil's delivery across the BBB. Improved BBB permeability and sustained drug release could lead to more effective concentration of the drug in the brain, potentially reducing peripheral cholinergic side effects, such as nausea and vomiting, often observed with traditional donepezil administration. This could result in better patient compliance and improved cognitive outcomes, making this nanocarrier system a promising alternative for Alzheimer's therapy.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1111-1120"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents. 治疗性深共晶溶剂(THEDESs)作为抗菌剂和抗癌剂的应用。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI: 10.1080/10837450.2024.2421786
Hala Bakr El-Nassan
{"title":"Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents.","authors":"Hala Bakr El-Nassan","doi":"10.1080/10837450.2024.2421786","DOIUrl":"10.1080/10837450.2024.2421786","url":null,"abstract":"<p><p>Deep eutectic solvents (DESs) are green alternatives to ionic liquids with wide applications in organic synthesis and catalysis. DESs are characterized by being easily prepared, biodegradable, nontoxic, and noninflammable. When one or more of the DES components is active pharmaceutical ingredient (API), the eutectic mixtures are named as therapeutic deep eutectic solvents (THEDESs). THEDESs are prepared in order to improve the solubility and/or the permeability of the APIs. This review presents a brief summary of the most important THEDESs reported to date having antimicrobial and/or anticancer activities. The challenges and limitations of THEDES preparation were also discussed. The work presented here indicated the importance of THEDES as a promising drug delivery system that can overcome the bioavailability problems while retaining or enhancing the biological activity of its components.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1084-1092"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and evaluation of ibrutinib-loaded glycyrrhizic acid conjugated ovalbumin nanoparticles and ibrutinib-glycyrrhizic acid complex for improved oral bioavailability. 负载依鲁替尼的甘草酸共轭卵清蛋白纳米颗粒和依鲁替尼-甘草酸配合物改善口服生物利用度的配方和评价。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-12-06 DOI: 10.1080/10837450.2024.2436190
Prateeksha Prakash Kamath, Pragathi Devanand Bangera, Divya Dhatri Kara, Rajeshwari Roychowdhury, Vamshi Krishna Tippavajhala, Mahalaxmi Rathnanand
{"title":"Formulation and evaluation of ibrutinib-loaded glycyrrhizic acid conjugated ovalbumin nanoparticles and ibrutinib-glycyrrhizic acid complex for improved oral bioavailability.","authors":"Prateeksha Prakash Kamath, Pragathi Devanand Bangera, Divya Dhatri Kara, Rajeshwari Roychowdhury, Vamshi Krishna Tippavajhala, Mahalaxmi Rathnanand","doi":"10.1080/10837450.2024.2436190","DOIUrl":"10.1080/10837450.2024.2436190","url":null,"abstract":"<p><p>The study aimed at enhancing the oral bioavailability of the BCS class 2 drug Ibrutinib (IBR), which exhibits low solubility (0.002 mg/mL) and high permeability (3.9% oral bioavailability). This was achieved through the formulation and evaluation of Ibrutinib-loaded Glycyrrhizic acid conjugated egg ovalbumin nanoparticles (IBR-GA-EA NPs) and Ibrutinib-Glycyrrhizic acid complex (IBR-GA-COMP). The formulation of Ibrutinib-Glycyrrhizic acid complex aimed to enhance the oral bioavailability of Ibrutinib. Lyophilized Ibrutinib-Glycyrrhizic acid complex was prepared and characterized through various studies including DSC, FTIR, <i>in vitro</i> release, and <i>in vivo</i> pharmacokinetics studies. DSC and FTIR confirmed successful formulation development. The nanoparticles exhibited spherical morphology with favourable characteristics: particle size of 194.10 nm, PDI of 0.22, and zeta potential of -33.96 mV. Encapsulation efficiency was 82.88%. <i>In vitro</i> release study displayed major improvement in drug release pattern compared to the free drug suspension. <i>In vivo</i> pharmacokinetic studies demonstrated 3.21-fold and 3.41-fold increase in the oral bioavailability of IBR-GA-EA NPs and IBR-GA-COMP, respectively, compared to IBR suspension alone. The formulated IBR-GA-EA NPs and IBR-GA-COMP are promising drug delivery methods as they successfully improve the solubility and oral bioavailability of Ibrutinib.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1185-1198"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic characterization of fast dissolving PVP-I powder with multipolymer approaches and investigation on their molecular interaction. 采用多聚物方法快速溶解 PVP-I 粉末的机理特征及其分子相互作用研究。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-21 DOI: 10.1080/10837450.2024.2428772
Maytawee Wutthichokmongkhonkul, Rutthapol Sritharadol, Teerapol Srichana
{"title":"Mechanistic characterization of fast dissolving PVP-I powder with multipolymer approaches and investigation on their molecular interaction.","authors":"Maytawee Wutthichokmongkhonkul, Rutthapol Sritharadol, Teerapol Srichana","doi":"10.1080/10837450.2024.2428772","DOIUrl":"10.1080/10837450.2024.2428772","url":null,"abstract":"<p><p>Povidone-iodine (PVP-I) is widely used as an antiseptic in medical applications. However, its effectiveness is limited by certain drawbacks, such as low solubility in water and high volatility. Therefore, a formulation of a stable solid PVP-I is desirable. In this study, complexes of molecular PVP-I with polyethylene glycol-polyvinyl alcohol copolymer (PEG-PVA copolymer) were considered water-soluble iodophors. Two different methods were used to prepare the solids: physical mixtures and kneading. The physical characteristics of the obtained solids were evaluated using several spectroscopic methods. The presence of iodine was confirmed by a potentiometric titration and antimicrobial activity was tested. The results showed that the PEG-PVA copolymer interacted with povidone primarily through hydrogen bonding between the hydroxyl part of the PEG-PVA copolymer and the amide part of povidone with an estimated binding energy of 3.2 kcal/mol. The amide groups polarity in povidone made them more likely to form hydrogen bonds with the PEG-PVA copolymer. Also, the protonated pyrrolidone bonded to the triiodide anions by intermolecular hydrogen bonds, which increased PVP-I solubility in water. The kneading method provided a faster dissolution rate than physical mixing and pure PVP-I. The iodine contents were within an acceptable range (10-12%), and the antimicrobial activity proved effective against <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, and <i>Streptococcus mutans</i>.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1162-1174"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro skin permeation of flavonoid esters enzymatically derived from natural oils: release mechanism from gel emulsion, stability, and dermatological compatibility. 从天然油中酶解提取的类黄酮酯的体外皮肤渗透性:凝胶乳液的释放机制、稳定性和皮肤相容性。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-09 DOI: 10.1080/10837450.2024.2424977
Ana Milivojević, Marija Ćorović, Anja Petrov Ivanković, Milica Simović, Katarina Banjanac, Rada Pjanović, Dejan Bezbradica
{"title":"<i>In vitro</i> skin permeation of flavonoid esters enzymatically derived from natural oils: release mechanism from gel emulsion, stability, and dermatological compatibility.","authors":"Ana Milivojević, Marija Ćorović, Anja Petrov Ivanković, Milica Simović, Katarina Banjanac, Rada Pjanović, Dejan Bezbradica","doi":"10.1080/10837450.2024.2424977","DOIUrl":"10.1080/10837450.2024.2424977","url":null,"abstract":"<p><p>Due to their broad spectrum of biological activities and attractive pharmacological properties, flavonoids are very promising molecules for application in skin care products. In this study, phloridzin and naringin medium- and long-chain fatty acid esters were enzymatically synthesized in reaction with natural oils (coconut and linseed oil) and <i>in vitro</i> transdermal delivery of synthesized esters through artificial Strat-M<sup>®</sup> membrane was investigated. Experimental results were succesfully fitted using Peppas and Sahlin model which includes the <i>lag</i> phase. Release kinetics of all examined flavonoid esters from gel emulsions through the membrane depended on both diffusion and polymer relaxation effect (0.5<<i>n</i> < 1). The estimated effective diffusion coefficients ranged from 0.168·10<sup>-8</sup> to 6.149·10<sup>-8</sup> cm<sup>2</sup> s<sup>-1</sup> for phloridzin esters and from 0.116·10<sup>-8</sup> to 4.210·10<sup>-8</sup> cm<sup>2</sup> s<sup>-1</sup> for naringin esters. The effective diffusion coefficients decreased with the increase in ester molecular weight indicating the size-dependent diffusion. All formulation showed good stability, excellent hydration effect, and excellent dermatological compatibility without irritating effect. It can be concluded that gel emulsions with a mixture of flavonoid esters enzymatically synthesized in reaction with vegetable oils can be effectively topically applied as a skin care products.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1121-1132"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-18 DOI: 10.1080/10837450.2024.2428508
{"title":"Correction.","authors":"","doi":"10.1080/10837450.2024.2428508","DOIUrl":"10.1080/10837450.2024.2428508","url":null,"abstract":"","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1199-1200"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meloxicam-amino acids salts/ion pair complexes with advanced solubility, dissolution, and gastric safety. 美洛昔康-氨基酸盐/离子对复合物,具有更高的溶解度、溶解性和胃安全性。
IF 2.6 4区 医学
Pharmaceutical Development and Technology Pub Date : 2024-12-01 Epub Date: 2024-10-24 DOI: 10.1080/10837450.2024.2417766
Hamdy Abdelkader, Adel Al Fatease, Zeinab Fathalla, Mai E Shoman, Heba A Abou-Taleb
{"title":"Meloxicam-amino acids salts/ion pair complexes with advanced solubility, dissolution, and gastric safety.","authors":"Hamdy Abdelkader, Adel Al Fatease, Zeinab Fathalla, Mai E Shoman, Heba A Abou-Taleb","doi":"10.1080/10837450.2024.2417766","DOIUrl":"10.1080/10837450.2024.2417766","url":null,"abstract":"<p><p>Amino acids have attracted attention as a potential functional excipient for optimizing biopharmaceutics characteristics of poorly soluble drugs. The amino acids are a diverse class with many functional groups, natural compounds, biocompatible, and low-molecular-weight substances. Two amino acids serine and arginine were investigated with meloxicam. Meloxicam has extremely low solubility; being NSAIDs, gastric upset, and ulcer are common side effects. Solid dispersions were produced by precipitation and physical mixing techniques. The produced combinations underwent <i>in vitro</i> dissolution, docking, DSC, FTIR, XRD, solubility, and gastric ulcer formation studies. Docking indicated ion pair/salt formation between the basic amino acid arginine and meloxicam. Both solubility and dissolution rates were increased by up to 3000-fold and 12-fold, respectively. DSC, FTIR an XRD supported these findings. Rats treated with meloxicam showed loss of surface gastric epithelium integrity and ulceration. The animal group received meloxicam: arginine showed intact gastric mucosa with the surface epithelium and gastric glands well organized and nearly similar to the untreated control. Arginine with the guanidine group that was capable of preserving gastric mucosa after repeated administration for 10 days. This study highlighted the role of arginine as a functional excipient that did not only improve solubility and dissolution rates but ameliorated the long-standing gastric side effects attributed to meloxicam.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1075-1083"},"PeriodicalIF":2.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信