Indomethacin-encapsulated PLGA nanoparticles improve therapeutic efficacy by increasing apoptosis and reducing motility in glioblastoma cells.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Ferhat Bostancı, Aslıhan Şengelen, Yunus Aksüt, Eren Yıldırım, İrem Öğütcü, Oğuz Yücel, Serkan Emik, Gülten Gürdağ, Murat Pekmez
{"title":"Indomethacin-encapsulated PLGA nanoparticles improve therapeutic efficacy by increasing apoptosis and reducing motility in glioblastoma cells.","authors":"Ferhat Bostancı, Aslıhan Şengelen, Yunus Aksüt, Eren Yıldırım, İrem Öğütcü, Oğuz Yücel, Serkan Emik, Gülten Gürdağ, Murat Pekmez","doi":"10.1080/10837450.2024.2448333","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue. Nanomaterials are crucial tools for overcoming solubility problems and facilitating drug delivery. Herein, a polymeric nanoparticle system, poly(lactic-co-glycolic acid) (PLGA) was used to encapsulate IND. Although PLGA is an FDA-approved copolymer for drug delivery, no trials with IND-loaded PLGA-NPs have been conducted to treat brain tumors. Encapsulation success was revealed by DLS, zeta potential, TEM, and FTIR analysis; IND/PLGA-NPs had nanoscale particle size (160.6 nm), narrow size distribution (0.230, PDI), and good stability (-23.9 mV). Fluorescence imaging showed that PLGA-NPs can penetrate U-87MG cells. Short-term/one-hour treatment with bound-IND increased the free-IND effect in gliomas by ⁓10 times/48h and 12.39 times/72h. Even against long-term exposure to IND, IND/PLGA-NP treatment revealed a highly marked result; the IC<sub>50</sub> value of bound-IND (treatment-time:1h, analysis at 48h) was ∼200µM, IC<sub>50</sub> value of free-IND (treatment-time:48h) was ∼390µM. Furthermore, IND/PLGA-NPs' anticancer activity (100 µM of IND/1h, analysis at 48h) was also supported by induced apoptosis and reduced migration/colony formation in glioma cells. All evidence suggests that IND/PLGA-NPs may be a potentially promising agent for treating gliomas.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"25-36"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2448333","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue. Nanomaterials are crucial tools for overcoming solubility problems and facilitating drug delivery. Herein, a polymeric nanoparticle system, poly(lactic-co-glycolic acid) (PLGA) was used to encapsulate IND. Although PLGA is an FDA-approved copolymer for drug delivery, no trials with IND-loaded PLGA-NPs have been conducted to treat brain tumors. Encapsulation success was revealed by DLS, zeta potential, TEM, and FTIR analysis; IND/PLGA-NPs had nanoscale particle size (160.6 nm), narrow size distribution (0.230, PDI), and good stability (-23.9 mV). Fluorescence imaging showed that PLGA-NPs can penetrate U-87MG cells. Short-term/one-hour treatment with bound-IND increased the free-IND effect in gliomas by ⁓10 times/48h and 12.39 times/72h. Even against long-term exposure to IND, IND/PLGA-NP treatment revealed a highly marked result; the IC50 value of bound-IND (treatment-time:1h, analysis at 48h) was ∼200µM, IC50 value of free-IND (treatment-time:48h) was ∼390µM. Furthermore, IND/PLGA-NPs' anticancer activity (100 µM of IND/1h, analysis at 48h) was also supported by induced apoptosis and reduced migration/colony formation in glioma cells. All evidence suggests that IND/PLGA-NPs may be a potentially promising agent for treating gliomas.

吲哚美辛包封的PLGA纳米颗粒通过增加胶质母细胞瘤细胞的凋亡和降低细胞运动来提高治疗效果。
胶质母细胞瘤是一种侵袭性强且难以治疗的致死性脑癌,生存率低。吲哚美辛(IND)是一种非甾体抗炎药,对包括胶质瘤在内的许多癌症具有抗肿瘤活性。然而,它的水溶性差是一个关键问题。纳米材料是克服溶解度问题和促进药物传递的关键工具。本研究使用聚乳酸-羟基乙酸(PLGA)聚合物纳米颗粒系统包封IND。尽管PLGA是fda批准的用于药物递送的共聚物,但尚未进行装载IND的PLGA- nps用于治疗脑肿瘤的试验。DLS、zeta电位、TEM和FTIR分析显示包封成功;IND/PLGA-NPs粒径为纳米级(160.6 nm),粒径分布窄(0.230,PDI),稳定性好(-23.9 mV)。荧光成像显示PLGA-NPs能穿透U-87MG细胞。结合ind短期/ 1小时治疗可使游离ind在胶质瘤中的作用增加⁓10倍/48小时和12.39倍/72小时。即使长期暴露于IND, IND/PLGA-NP治疗也显示出非常显著的结果;结合ind(处理时间:1h, 48h分析)的IC50值为~ 200µM,游离ind(处理时间:48h)的IC50值为~ 390µM。此外,IND/PLGA-NPs的抗癌活性(100µM IND/1h, 48h分析)也通过诱导胶质瘤细胞凋亡和减少迁移/集落形成得到支持。所有证据表明,IND/PLGA-NPs可能是治疗胶质瘤的一种潜在的有前景的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信