Tarek A Samra, Ibrahim A Elbahwy, Hammam A Mowafy, Mohsen I Afouna
{"title":"Enhancing Ocular Drug Delivery: Development and In Vivo Evaluation of Mucoadhesive Nanostructured Lipid Carriers for Terbinafine.","authors":"Tarek A Samra, Ibrahim A Elbahwy, Hammam A Mowafy, Mohsen I Afouna","doi":"10.1080/10837450.2025.2488999","DOIUrl":"https://doi.org/10.1080/10837450.2025.2488999","url":null,"abstract":"<p><p>This study investigated incorporating Terbinafine Hydrochloride (TH) into chitosan-coated nanostructured lipid carrier (NLCs) to improve ocular treatment for fungal keratitis. Solubility studies were conducted to determine the most suitable lipids for NLCs formulation. TH-loaded NLCs were prepared via emulsification followed by ultrasonication. The impact of various lipids and surfactants on the formulation was investigated. The optimal formulation (TH-NLC10) was coated with chitosan (0.5% w/v), resulting in the coated TH-NLC10-CS 0.05% formulation. This formulation was evaluated for physicochemical properties, morphology, in-vitro release, mucoadhesion, permeation, and in vivo efficacy in treating ocular fungal keratitis in rabbits. Results revealed variations in lipids and surfactants significantly affected particle size. All prepared TH-NLCs formulations within the nanometer range. Physicochemical characterizations of the coated TH-NLC10-CS 0.05% showed 88.37 ± 2.41 nm size, 20.2 ± 1.4 mV zeta potential, 93.3 ± 1.5% w/w entrapment efficiency, and spherical morphology. TH-NLC10-CS 0.05% exhibited sustained TH release (66.65 ± 4.3% over 8 h) and strong mucoadhesion as indicated by a decrease in zeta potential from +20.2 ± 1.4 mV to +2.9 ± 0.7 mV. TH-NLC10-CS 0.05% demonstrated a 2.4-fold increase in TH permeation compared to plain TH, along with effective in vivo antifungal activity. This study confirms that mucoadhesive NLCs with TH are promising for the treatment of ocular fungal keratitis.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-20"},"PeriodicalIF":2.6,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelrahman Y Sherif, Doaa Hasan Alshora, Ahlam Alhusaini, Mohamed Abbas Ibrahim, Abdullah Ahmed Alghannam
{"title":"Black Seed Oil Boosts Antidiabetic Activity of Glibenclamide: Development of Solidified Self Nanoemulsifying Drug Delivery System and Evaluation in Streptozotocin-Induced Diabetic Rat Model.","authors":"Abdelrahman Y Sherif, Doaa Hasan Alshora, Ahlam Alhusaini, Mohamed Abbas Ibrahim, Abdullah Ahmed Alghannam","doi":"10.1080/10837450.2025.2489004","DOIUrl":"https://doi.org/10.1080/10837450.2025.2489004","url":null,"abstract":"<p><p>Self nano-emulsifying drug delivery system (SNEDDS) has been widely used to enhance dissolution and bioavailability of glibenclamide (GB). In addition, black seed oil, containing bioactive thymoquinone (TQ), showed promising antihyperglycemic effect. Therefore, this work aims to design solid SNEDDS formulation composed of Black seed oil loaded with GB to enhance its antihyperglycemic activity. Different SNEDDS formulations were prepared and characterized for miscibility, dispersibility, droplet size, zeta potential, and in-vitro dissolution. Moreover, antidiabetic activity of prepared formulation against pure drug was evaluated using streptozotocin-induced diabetic rat model. The selected liquid SNEDDS (F7) formulation consisted of Kolliphor EL: Caproyl 90: BSO that produced nanoemulsion particles (24.9 ± 0.2nm). Different solidified formulations were prepared from F7, and the solidified (S4) formulation was selected as optimum formulation that showed GB and TQ had a DE% value of 73.16 ± 0.59 and 70.9%, respectively. Overall, both pure GB and GB-SNEDDS formulations significantly reduced blood glucose levels compared to the control diabetic group. The GB-SNEDDS showing superior efficacy (67% reduction, p = 5.5 × 10<sup>-5</sup>) compared to pure GB (52% reduction, p = 1.5 × 10<sup>-4</sup>). Moreover, the GB-SNEDD formulation has a significant (p = 0.0363) reducing action on blood glucose levels compared with the pure GB group. Present results showed that the prepared formulation boosted the antidiabetic activity of oral hypoglycemic drugs. This could open new avenues for using black seed oil as a natural bioactive hypoglycemic agent while preparing the SNEDDS formulation.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.6,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Salah Eleleemy, Maha H Ragaie, Basma Hamdy Amin, Maha Nasr, Omaima A Sammour
{"title":"Enhanced Skin Penetration and Clinical Antifungal Activity of Eugenol Encapsulated in Aspasomes.","authors":"Muhammad Salah Eleleemy, Maha H Ragaie, Basma Hamdy Amin, Maha Nasr, Omaima A Sammour","doi":"10.1080/10837450.2025.2486808","DOIUrl":"https://doi.org/10.1080/10837450.2025.2486808","url":null,"abstract":"<p><p>Fungal infections are among the common diseases affecting the skin, which necessitate either topical or systemic delivery of antifungal agents. Eugenol was reported to exhibit antifungal properties, but owing to its poor skin-penetration ability, it requires encapsulation within delivery carriers. This study aimed to enhance the skin penetration and antifungal efficacy of eugenol through encapsulation in novel aspasomal formulations. Cationic and anionic aspasomes were prepared using ascorbyl palmitate, transcutol, and charge inducers, achieving high encapsulation efficiencies (90.55% for cationic, 63.32% for anionic) and stable formulations. <i>Ex-vivo</i> skin deposition studies showed significant eugenol retention in deeper skin layers, with 82.2% (cationic) and 77.2% (anionic) total skin deposition. Both formulations demonstrated superior antifungal activity compared to eugenol solution, with larger zones of inhibition against <i>Candida albicans</i> and <i>Trichophyton rubrum</i>. Clinical trials in patients with candidiasis and dermatophytosis revealed complete resolution of symptoms in 100% of patients treated with aspasomes, while eugenol solution showed partial improvement. These findings suggest that aspasomal encapsulation significantly enhances eugenol's therapeutic potential, offering a promising strategy for improving the treatment of fungal skin infections.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chitosan Nanoparticle Encapsulation of <i>Thymus Capitatus</i> Essential Oil: <i>In Vitro</i> Release, Antioxidant, Antibacterial Activity and Cytotoxicity in MDA-MB-231 Cells.","authors":"Huseyin Beyaz, Doga Kavaz, Nahit Rizaner","doi":"10.1080/10837450.2025.2487255","DOIUrl":"https://doi.org/10.1080/10837450.2025.2487255","url":null,"abstract":"<p><p><i>Thymus capitatus (Th. Ca)</i> is known to treat mouth ulcers and respiratory infections in Cyprus. However, antioxidant, antibacterial and cytotoxic potential of <i>Th. Ca.</i> EO on MDA-MB-231 cells and its' encapsulation into nanoparticles has not been well studied. Therefore, we aimed to analyse the antioxidant, antibacterial, cytotoxic potential, loading efficiency and <i>in vitro</i> release profile of both <i>Th. Ca.</i> EO and Chitosan Nanoparticle (Ch. Np) - <i>Th. Ca.</i> EO. GC-MS analysis revealed 53.97% carvacrol, 14.53% borneol and 12.09% sabinene presence in EO. The loading efficiency of <i>Th. Ca.</i> EO into Ch. Np. was calculated as 35.27% and the <i>in vitro</i> release profile reached a maximum of 68% in pH 7 for two weeks. The Minimum Inhibitory Concentration (MIC) assay showed that <i>E. coli</i> had an MIC<sub>50</sub> of 0.3215 mg/ml while <i>B. subtilis</i> had an MIC<sub>50</sub> of 0.5304 mg/ml. The antioxidant activity of the EO was assessed by performing a DPPH assay with an IC<sub>50</sub> = 440 μg/ml. Trypan Blue Assay revealed that 60 µg/ml <i>Th. Ca.</i> EO significantly reduced the cell viability of MDA-MB-231 cells by 10.7% at 48h and 20.06% at 72h. Overall, Ch. Np. - <i>Th. Ca.</i> EO has shown a promising formulation for the pharmaceutical industry.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-50"},"PeriodicalIF":2.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and characterization of Duloxetine-loaded nanofiber scaffold composed of polyvinyl alcohol and chitosan as wound healing agent, fabricated by electrospinning method.","authors":"Kimiya Pourdehghan, Faraz Najafi, Fatemeh Majdi, Nooshafarin Amani, Nasrin Samadi, Hamid Akbari Javar","doi":"10.1080/10837450.2025.2486797","DOIUrl":"https://doi.org/10.1080/10837450.2025.2486797","url":null,"abstract":"<p><p>Wound is a disruption in the epithelial integrity of the skin or mucosa, which is caused by internal or external pathological processes. In this study, a nanofiber as wound dressing loaded with Duloxetine was produced by electrospinning technique. The diameter of nanofibers containing 20% and 40% Duloxetine was around 236 nm and 272 nm, respectively. Tensile testing results showed that elongation at break percentage soared from 11.5% for drug-free nanofibers to 40.01% for nanofibers containing 40% Duloxetine. All nanofibers had uniform bead-free structure. Contact angle of nanofibers with and without drug was 84.3° and 99.3°, respectively. The drug release profile revealed that after the burst release over the first 8 hours, the curve witnessed a slow sustained release for a longer period. The nanofibers had antibacterial activity against gram-positive and gram-negative bacteria and the crosslinked nanofibers with 40% duloxetine had the largest diameter of inhibition zone at roughly 43 mm for Staphylococcus aureus, 40 mm for Escherichia coli, and 30 mm for Pseudomonas aeruginosa. Clinical studies showed that the percentage of wound area reduction was approximately 96.41% for nanofibers containing 40% duloxetine which was higher than positive control containing phenytoin at around 92.24% and also the other group with 20% duloxetine at 81.68%.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-59"},"PeriodicalIF":2.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the application of single-step drying in lyophilization of high protein concentration formulations.","authors":"Qi Zeng, Zhaowei Jin, Jeremy Guo","doi":"10.1080/10837450.2025.2476707","DOIUrl":"10.1080/10837450.2025.2476707","url":null,"abstract":"<p><strong>Objectives: </strong>Single-step drying integrates sublimation and desorption process in one step. The applicability of single-step drying in high protein concentration formulations with or without viscosity reducers remains to be explored. And drying behavior of single-step drying remains to be monitored.</p><p><strong>Methods: </strong>Firstly, in formulations without viscosity reducers (sucrose and mannitol), the method of single-step drying at shelf temperature (Ts) of 25 °C and chamber pressure (Pc) of 0.3 mbar with aggressive annealing (-3 °C) was tested; secondly, two viscosity reducers (ArgHCl and NaCl) were applied to further explore the application of single-step drying in viscosity reducer-containing formulations; finally, drying behavior of single-step drying was monitored in real time by tunable diode laser absorption spectroscopy(TDLAS).</p><p><strong>Results: </strong>In single-step drying process, significant cycle time reduction (68%) was achieved compared to traditional two-step drying. Good cake appearance was observed in all formulation combinations with comparable pre- and post-lyophilization quality attributes as well as reconstitution time. Three times faster sublimation rate was monitored in single-step drying process compared to traditional two-step drying.</p><p><strong>Conclusion: </strong>Single-step drying was proved to be applicable to high protein concentration formulations with or without viscosity reducers. Significant cycle time reduction in drying process was achieved. Sublimation rate resulted in a more efficient drying cycle as a whole even though an increase of product resistance.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-8"},"PeriodicalIF":2.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143625508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucas Korsgaard Andreasen, Emilie Victoria Slot Andreasen, Wuzhong He, Jukka Rantanen, Natalja Genina
{"title":"Insight into manufacturing of bespoke combination drug products containing carvedilol and simvastatin by fused deposition modeling.","authors":"Lucas Korsgaard Andreasen, Emilie Victoria Slot Andreasen, Wuzhong He, Jukka Rantanen, Natalja Genina","doi":"10.1080/10837450.2025.2475965","DOIUrl":"10.1080/10837450.2025.2475965","url":null,"abstract":"<p><p>The goal of this study was to explore the fabrication of a combination drug product containing two poorly soluble active pharmaceutical ingredients (APIs), carvedilol (CAR) and simvastatin (SIM), in therapeutically relevant doses (25 mg of each API) with a distinct, easily distinguishable shape. Fused deposition modeling, combined with hot-melt extrusion (HME), was used to produce hollow heart-shaped dual-loaded tablets in which the two APIs were spatially separated with an intermediate API-free layer. Water-soluble hydroxypropyl methylcellulose of varying molecular weights was used as the primary polymer for HME. The incorporation of a processability-improving polymer, such as polycaprolactone, was necessary to facilitate the printing of these delicate geometries and lower the printing temperature. The 3D-printed tablets contained the therapeutic doses of both APIs; however, further optimization of manufacturing processes is required to improve drug content uniformity. The drug release from the printed tablets was sustained, with complete release of CAR observed after 24 h, demonstrating the suitability of the designed drug products for oral delivery.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-9"},"PeriodicalIF":2.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soha M Kandil, Iman I Soliman, Marwa Hosni, Abeer Salama, Ebtisam M Abdou
{"title":"Assessment of therapeutic effectiveness of developed colchicine transnovasomes in treatment of recurrent aphthous ulcer as monotherapy and combination therapy with platelet-rich plasma.","authors":"Soha M Kandil, Iman I Soliman, Marwa Hosni, Abeer Salama, Ebtisam M Abdou","doi":"10.1080/10837450.2025.2475967","DOIUrl":"10.1080/10837450.2025.2475967","url":null,"abstract":"<p><strong>Objectives: </strong>Transnovasomes is a new exciting class of lipid-based nanovesicles. Colchicine (COL) is a hydrophilic natural alkaloid with anti-inflammatory features having oral administration and permeation defects. Recurrent Aphthous Ulcer (RAU) is the most prevalent disease of the oral mucosa suffering from lack of a particular and final preventative therapy. So, designing a prolonged and effective specialized delivery system for ulcer treatment is important.</p><p><strong>Methods: </strong>Colchicine transnovasomes (COL-TNs) were prepared using surfactants (Span 60 & Span 80), free fatty acids (Oleic acid & Stearic acid), Cholesterol and Brij 58. COL-TNs were evaluated for their vesicle size (VS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and <i>ex-vivo</i> permeation after 12 h (Q<sub>12h</sub>).</p><p><strong>Results: </strong>Values of VS, PDI, ZP, EE% and Q<sub>12h</sub> of the optimized formulation were 256.74 ± 11.2 nm, 0.322 ± 0.08, -43.3 ± 0.62, 85.35 ± 3.7% and 72.69 ± 5.84% respectively. Drug accumulation from the optimized formulation was ninefold greater than drug solution after 8 h. <i>In-vivo</i>, COL-TNs formulation, alone or in combination with platelet-rich plasma (PRP), achieved complete healing of acetic-acid induced RAU restoring normal levels of assayed biomarkers and normal oral mucosa histological features .</p><p><strong>Conclusions: </strong>COL-TNs can be used as a promising, safe, efficient treatment of RAU, as monotherapy or combination therapy with PRP.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-19"},"PeriodicalIF":2.6,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin-Hyuk Jeong, Chang-Soo Han, Ji-Hyun Kang, Kwang-Hwi Yoo, Woong-Young Jung, Yun-Sang Park, Dong-Wook Kim, Chun-Woong Park
{"title":"Preparation and characterization of immediate release 3D printed tablets using hot melt extruded amorphous cyclosporine a filament.","authors":"Jin-Hyuk Jeong, Chang-Soo Han, Ji-Hyun Kang, Kwang-Hwi Yoo, Woong-Young Jung, Yun-Sang Park, Dong-Wook Kim, Chun-Woong Park","doi":"10.1080/10837450.2025.2472893","DOIUrl":"10.1080/10837450.2025.2472893","url":null,"abstract":"<p><p>3D printing technology is gaining attention as a next-generation approach to drug formulation. Among 3D printing techniques, fused deposition modeling is cost-effective but depends heavily on suitable filaments. Hot melt extrusion enables filament production by incorporating poorly water-soluble drugs like cyclosporine A into polymers to form solid dispersions. However, achieving immediate release formulations with 3D printing remains challenging due to issues such as inadequate tablet disintegration or drug entrapment within the polymer matrix. This study aimed to develop and evaluate immediate release 3D-printed cyclosporine A tablets using HME filaments. Three parameters were modified in the 3D printing process: varying fill speeds, infill densities, and channel lengths. Filaments composed of Kollidon<sup>®</sup> VA 64 and HPC-SSL (1:1) were used to print tablets. Solid-state analysis confirmed cyclosporine A 's amorphous state and partial crystallinity in Xylisorb<sup>®</sup> 300. Dissolution studies revealed that lower infill densities (30%) and fewer walls enhanced drug release by increasing internal void space and reducing hardness. Conversely, greater tablet height (channel length) delayed dissolution. These findings emphasize the critical role of geometric design in drug release, showcasing the potential of 3D printing to create personalized dosage forms tailored to patient needs by optimizing structural parameters.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-11"},"PeriodicalIF":2.6,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Saccharomyces cerevisiae</i>-derived vesicles loaded with dextromethorphan as a candidate for the management of neuroinflammation related to Alzheimer's disease.","authors":"Parastoo Valizadeh, Negin Mozafari, Hajar Ashrafi, Reza Heidari, Negar Azarpira, Amir Azadi","doi":"10.1080/10837450.2025.2470351","DOIUrl":"10.1080/10837450.2025.2470351","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease that is associated with neuroinflammation. Dextromethorphan (DXM) exerts neuroprotective effects in many central nervous system injuries and neurodegenerative diseases. The cell wall of <i>Saccharomyces cerevisiae</i> is a cell-based drug delivery system that can be a suitable candidate for targeted drug delivery to the site of inflammation. In this study, nanoparticles (NPs) were prepared from <i>Saccharomyces cerevisiae</i> cell walls, coated with polysorbate-80, and loaded with DXM. NPs had favorable hemolytic behavior with a particle size distribution of 187.25 ± 73.37 nm and a zeta potential of +4.3 mV. Pathological examination in a mouse model of neuroinflammation showed that NPs had the ability to reduce brain inflammation and the adverse effects of DXM.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-9"},"PeriodicalIF":2.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}