负载尼莫地平的5-(对羧基苯氧基)戊酸酐微球的制备、表征及释药性能

IF 2.5 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Sibo Su, Jingguo Liu, Yongxue Guo
{"title":"负载尼莫地平的5-(对羧基苯氧基)戊酸酐微球的制备、表征及释药性能","authors":"Sibo Su, Jingguo Liu, Yongxue Guo","doi":"10.1080/10837450.2025.2559719","DOIUrl":null,"url":null,"abstract":"<p><p>Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation. To overcome these pharmacological constraints, this investigation engineered a novel drug-loaded microsphere system utilizing poly(5-(p-carboxyphenoxy) valeric anhydride (Poly(CPV)) as a biodegradable matrix material. The sustained-release microspheres were fabricated <i>via</i> microfluidic technology to systematically address the clinical challenges associated with frequent dosing regimens. The optimized microspheres exhibited a drug loading capacity of 5.59%, an encapsulation efficiency of 70.22%, and a uniform particle size distribution (43.98 ± 4.29 μm). <i>In vitro</i> release studies demonstrated sustained drug release over 14 days. Pharmacokinetic evaluation in rats revealed that the NMP-loaded microspheres maintained relative stable plasma drug concentrations for approximately 10 days. Biocompatibility assessments, including histocompatibility tests and <i>in vitro</i> cytotoxicity assays, confirmed the excellent biocompatibility of the Poly(CPV) microsphere. These findings suggest that Poly(CPV)-based microspheres prepared by microfluidics represent a promising drug delivery platform for poorly soluble small-molecule pharmaceuticals, offering controlled release characteristics and improved therapeutic outcomes.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-16"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, characterization and drug release properties of 5-(p-carboxyphenoxy) valeric anhydride microspheres loaded with nimodipine.\",\"authors\":\"Sibo Su, Jingguo Liu, Yongxue Guo\",\"doi\":\"10.1080/10837450.2025.2559719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation. To overcome these pharmacological constraints, this investigation engineered a novel drug-loaded microsphere system utilizing poly(5-(p-carboxyphenoxy) valeric anhydride (Poly(CPV)) as a biodegradable matrix material. The sustained-release microspheres were fabricated <i>via</i> microfluidic technology to systematically address the clinical challenges associated with frequent dosing regimens. The optimized microspheres exhibited a drug loading capacity of 5.59%, an encapsulation efficiency of 70.22%, and a uniform particle size distribution (43.98 ± 4.29 μm). <i>In vitro</i> release studies demonstrated sustained drug release over 14 days. Pharmacokinetic evaluation in rats revealed that the NMP-loaded microspheres maintained relative stable plasma drug concentrations for approximately 10 days. Biocompatibility assessments, including histocompatibility tests and <i>in vitro</i> cytotoxicity assays, confirmed the excellent biocompatibility of the Poly(CPV) microsphere. These findings suggest that Poly(CPV)-based microspheres prepared by microfluidics represent a promising drug delivery platform for poorly soluble small-molecule pharmaceuticals, offering controlled release characteristics and improved therapeutic outcomes.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2559719\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2559719","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

尼莫地平(NMP)是一种水溶性差的小分子药物,在治疗蛛网膜下腔出血(SAH)继发脑血管痉挛方面存在明显的治疗局限性。由于其固有的物理化学特性,其特点是口服生物利用度低,消除半衰期快,首过代谢广泛,传统配方需要频繁给药方案以维持治疗血浆浓度。这些药理挑战共同导致患者依从性欠佳,血浆浓度波动明显,血管刺激复发。为了克服这些药理学限制,本研究设计了一种新的载药微球系统,利用聚(5-(对羧基苯氧基)戊酸酐(聚(CPV))作为可生物降解的基质材料。通过微流控技术制备缓释微球,系统地解决了与频繁给药方案相关的临床挑战。优化后的微球载药量为5.59%,包封率为70.22%,粒径分布均匀(43.98±4.29 μm)。体外释放研究表明药物持续释放超过14天。在大鼠体内的药代动力学评价显示,装载nmp的微球在大约10天内保持相对稳定的血浆药物浓度。生物相容性评估,包括组织相容性试验和体外细胞毒性试验,证实了聚(CPV)微球的良好生物相容性。这些发现表明,微流体制备的聚(CPV)微球具有控释特性和改善治疗效果,是一种很有前景的低溶性小分子药物递送平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation, characterization and drug release properties of 5-(p-carboxyphenoxy) valeric anhydride microspheres loaded with nimodipine.

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation. To overcome these pharmacological constraints, this investigation engineered a novel drug-loaded microsphere system utilizing poly(5-(p-carboxyphenoxy) valeric anhydride (Poly(CPV)) as a biodegradable matrix material. The sustained-release microspheres were fabricated via microfluidic technology to systematically address the clinical challenges associated with frequent dosing regimens. The optimized microspheres exhibited a drug loading capacity of 5.59%, an encapsulation efficiency of 70.22%, and a uniform particle size distribution (43.98 ± 4.29 μm). In vitro release studies demonstrated sustained drug release over 14 days. Pharmacokinetic evaluation in rats revealed that the NMP-loaded microspheres maintained relative stable plasma drug concentrations for approximately 10 days. Biocompatibility assessments, including histocompatibility tests and in vitro cytotoxicity assays, confirmed the excellent biocompatibility of the Poly(CPV) microsphere. These findings suggest that Poly(CPV)-based microspheres prepared by microfluidics represent a promising drug delivery platform for poorly soluble small-molecule pharmaceuticals, offering controlled release characteristics and improved therapeutic outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信