Pharmaceutical Development and Technology最新文献

筛选
英文 中文
Eudragit-based electrospun nanofibers for improving the solubility and permeability of cefditoren pivoxil: in-vitro, ex-vivo and histological assessment. 以乌拉吉特为基础的静电纺丝纳米纤维改善头孢地托林酯的溶解度和渗透性:体外、离体和组织学评估。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-09-06 DOI: 10.1080/10837450.2025.2556057
Doaa A Habib, Omar Y Mady, Youstina Samuel Salib, Heba M ElBedaiwy
{"title":"Eudragit-based electrospun nanofibers for improving the solubility and permeability of cefditoren pivoxil: in-vitro, ex-vivo and histological assessment.","authors":"Doaa A Habib, Omar Y Mady, Youstina Samuel Salib, Heba M ElBedaiwy","doi":"10.1080/10837450.2025.2556057","DOIUrl":"10.1080/10837450.2025.2556057","url":null,"abstract":"<p><p>The dual solubility enhancement effect of nanofiber technology and pH-sensitive Eudragit L100-55 and S100 on class IV Cefditoren pivoxil (CEF) was studied. Nanofibers of different drug-polymer ratios were prepared. In-vitro characterization of CEF-loaded nanofibrous systems was performed through scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and in-vitro drug release. SEM showed that the nanofiber prepared using S100 is thicker than that prepared using L100-55 without entrapping any drug crystals in the polymer matrix. DSC scan proved the drug was entrapped in its molecular state due to the disappearance of the drug's crystallinity. The drug release profile indicated that all nanofiber formulations exhibited a considerably higher dissolution rate than free drug in the following order ED L100-55 > ED S100 > pure drug. Drug permeability enhancement was studied by using the modified non-everted sac technique. The drug permeability agrees in the same order as the drug release profile. Histology of the intestinal segment after 90 min showed the appearance of nanoparticles in the cytoplasm of the enterocytes, indicating that the drug absorption mechanism is mainly transcellular. Histology of the intestinal segment at the end of the experiment showed a highly significant increase in the mean length of the intercellular space of EL100-55 (<i>p</i> < 0.001), indicating drug enhancement <i>via</i> the paracellular pathway.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.5,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and evaluation of buccal films loaded with insulin encapsulated in glucose responsive amphiphilic dendrimer micelles. 糖反应性两亲性树突胶束负载胰岛素口腔膜的制备与评价。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-09-06 DOI: 10.1080/10837450.2025.2556060
Dana R Dweekat, Suhair S Al-Nimry, Ayat A Bouzieh
{"title":"Formulation and evaluation of buccal films loaded with insulin encapsulated in glucose responsive amphiphilic dendrimer micelles.","authors":"Dana R Dweekat, Suhair S Al-Nimry, Ayat A Bouzieh","doi":"10.1080/10837450.2025.2556060","DOIUrl":"10.1080/10837450.2025.2556060","url":null,"abstract":"<p><p>The objective was to prepare a mucoadhesive buccal film containing amphiphilic dendrimer micelles nanoparticles (APD micelles NPs) loaded with insulin. The APD micelles NPs were synthesized by a series of chemical reactions followed by self-assembly. Insulin loading was done by mixing insulin with APD micelles solution. A mucoadhesive buccal film was prepared using solvent casting method. Stability of the buccal film after 3 months of storage in a refrigerator was investigated in terms of viscosity, drug loading, FTIR, <i>in vitro</i> drug release and morphology. The APD micelles NPs had good encapsulation efficiency and good loading capacity. FTIR results showed no interaction with the drug. <i>In vitro</i> release of insulin was glucose sensitive, increasing with time and with glucose levels and sustained for 8-10 h. The Loaded buccal film showed good physical appearance, excellent folding endurance, good mucoadhesive and tensile strength, neutral surface pH, acceptable thickness and weight. Insulin release from buccal film was not affected by the extra barrier. The stability study indicated that the film did not show any changes. In conclusion, APD micelles NPs were able to control insulin release according to glucose levels. The buccal film is expected to enhance the bioavailability of insulin compared to oral administration.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-12"},"PeriodicalIF":2.5,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strontium alginate hybrid (inorganic/organic) nanoparticles as a novel promising nanosystem for bone regeneration: in-vitro optimization and in-vivo assessment. 海藻酸锶杂化(无机/有机)纳米颗粒作为一种新的有前途的骨再生纳米系统:体外优化和体内评估。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-09-05 DOI: 10.1080/10837450.2025.2556058
Nouran M Atia, Hebatallah S Barakat, Heba A Hazzah, Rania G Ali, Ossama Y Abdallah
{"title":"Strontium alginate hybrid (inorganic/organic) nanoparticles as a novel promising nanosystem for bone regeneration: in-vitro optimization and in-vivo assessment.","authors":"Nouran M Atia, Hebatallah S Barakat, Heba A Hazzah, Rania G Ali, Ossama Y Abdallah","doi":"10.1080/10837450.2025.2556058","DOIUrl":"10.1080/10837450.2025.2556058","url":null,"abstract":"<p><p>Strontium (Sr) is a bone-seeking element characterized by its dual function of stimulating bone growth and preventing bone resorption. On the other hand, alginates (Alg) have distinct physicochemical characteristics from other natural polysaccharides because of their ability to encapsulate proteins and drugs. This work aimed to prepare novel hybrid inorganic/organic strontium alginate (Sr-Alg) nanoparticles for use as a targeting ligand in bone regeneration. These hybrid nanoparticles were prepared by a simple precipitation technique and different formulation variables were studied. The optimized formulation showed the most promising particle size (133.80 ± 2.40 nm) and zeta potential (-31.5 ± 1.45 mV). Moreover, the selected formulation was subjected to characterization using FTIR and X-ray diffraction to confirm the formation of the hybrid structure. The selected formulation was subjected to an <i>in vivo</i> study and compared with calcium alginate nanoparticles. Mice treated with Sr-containing formulation showed significant improvement in Ca/P and Ca + Sr/P ratios reached 1.799 ± 0.01 and 1.89 ± 0.01, respectively. An <i>in vivo</i> toxicity study was also assessed based on biochemical assays and histological examination of liver and kidney tissues and confirmed that non-significant nephrotoxic or hepatotoxic effects were demonstrated in the treated groups. Therefore, Sr-Alg could be considered a promising targeted ligand for bone regeneration with enhanced safety and efficacy.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.5,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermosensitive hydrogel with nanostructured lipid carriers (NLC) for the topical administration of curcuminoids, resveratrol, and piperine intended for the treatment of psoriasis. 带有纳米结构脂质载体(NLC)的热敏水凝胶,用于局部给药姜黄素、白藜芦醇和胡椒碱,用于治疗牛皮癣。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-08-28 DOI: 10.1080/10837450.2025.2544574
Alegre Flores-Pérez, Rosa Maria Angeles-Villegas, Angélica Villanueva-Martínez, Norma L Delgado-Buenrostro, Yolanda I Chirino, María Guadalupe Nava-Arzaluz, Elizabeth Piñón-Segundo, Adriana Ganem-Rondero
{"title":"Thermosensitive hydrogel with nanostructured lipid carriers (NLC) for the topical administration of curcuminoids, resveratrol, and piperine intended for the treatment of psoriasis.","authors":"Alegre Flores-Pérez, Rosa Maria Angeles-Villegas, Angélica Villanueva-Martínez, Norma L Delgado-Buenrostro, Yolanda I Chirino, María Guadalupe Nava-Arzaluz, Elizabeth Piñón-Segundo, Adriana Ganem-Rondero","doi":"10.1080/10837450.2025.2544574","DOIUrl":"https://doi.org/10.1080/10837450.2025.2544574","url":null,"abstract":"<p><p>Chronic inflammatory conditions, such as psoriasis, require effective therapeutic strategies to manage both local and systemic inflammation. This study aimed to develop a thermosensitive hydrogel (Gel) based on Pluronic F127 and F68, incorporating NLC (Gel-NLC) loaded with anti-inflammatory phytochemicals, such as curcuminoids, resveratrol, and/or piperine, for the topical treatment of psoriasis. Phytochemicals-loaded NLC presented encapsulation efficiency > 90%, particle size values between 39-49 nm, and polydispersity indices <0.211. Compared to curcuminoids and resveratrol from NLC and Gel-NLC, piperine alone or in combination with other phytochemicals showed superior release and transdermal flux both <i>in vitro</i> and <i>ex vivo</i>. Simultaneous encapsulation of resveratrol and piperine significantly decreased the permeation of the former, while an increase in the permeation of piperine was observed when combined with curcuminoids or resveratrol. Confocal microscopy analysis revealed that curcuminoids displayed the highest retention in the skin when encapsulated in NLC as a single agent, followed by resveratrol and piperine. These variations can be attributed to their physicochemical properties. The developed formulations are presented as effective delivery systems that can enhance the availability of these phytochemicals, thereby increasing their anti-inflammatory potential in the treatment of psoriasis.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-26"},"PeriodicalIF":2.5,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144964695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TSA-SAB co-loaded liposome self-dissolving microneedle synergistic delivery system: a breakthrough dual-drug loading strategy for multi-target therapy of hypertrophic scars. TSA-SAB共载脂质体自溶微针协同递送系统:肥厚性疤痕多靶点治疗的突破性双药负载策略
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-08-19 DOI: 10.1080/10837450.2025.2545482
Lu-Lu Cheng, Jia-Hui Yu, Bi-Jin Yao, Ying-Ping Li, Rui-Xiang Peng, Jing-Hang Xu, Jun Shi
{"title":"TSA-SAB co-loaded liposome self-dissolving microneedle synergistic delivery system: a breakthrough dual-drug loading strategy for multi-target therapy of hypertrophic scars.","authors":"Lu-Lu Cheng, Jia-Hui Yu, Bi-Jin Yao, Ying-Ping Li, Rui-Xiang Peng, Jing-Hang Xu, Jun Shi","doi":"10.1080/10837450.2025.2545482","DOIUrl":"10.1080/10837450.2025.2545482","url":null,"abstract":"<p><p>The treatment of hypertrophic scars is constrained by inefficient transdermal delivery and challenges in co-delivery of multiple drugs. Although tanshinone IIA and salvianolic acid B exhibit multi-target antifibrotic potential, their divergent physicochemical properties limit combined application. This study proposes a novel transdermal system integrating co-loaded liposomes with dissolving microneedles (DMNs). TSA-SAB liposomes were prepared <i>via</i> thin-film dispersion with pH gradient method, optimized using Box-Behnken design to overcome traditional single-factor limitations. High-efficiency co-loading was achieved for lipophilic TSA (encapsulation efficiency: 86.10%) and hydrophilic SAB (98.43%). Integration with centrifugally cast microneedles yielded loadings of 216.01 μg/patch (TSA) and 371.65 μg/patch (SAB). Leveraging microneedle-mediated penetration and liposomal sustained release, the system showed 3-fold higher transdermal efficiency than free drugs, establishing a dermal reservoir. <i>In vitro</i> release followed Higuchi model (24 h: 68.33% TSA, 76.33% SAB) without burst release. Integrating nanocarriers with microneedles, this study provides a strategy to address multi-drug incompatibility and transdermal barriers, laying groundwork for HS therapy translation.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.5,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144804472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-delivery of doxorubicin and piperine using niosomes exhibited enhanced cytotoxic and inhibitory effect on cancer stem cell markers in breast cancer cells. 利用乳质体共同递送阿霉素和胡椒碱对乳腺癌细胞的肿瘤干细胞标记物具有增强的细胞毒性和抑制作用。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-08-14 DOI: 10.1080/10837450.2025.2545486
Mohadese Sheikhhosseini, Sara Soltanian, Neda Mohamadi
{"title":"Co-delivery of doxorubicin and piperine using niosomes exhibited enhanced cytotoxic and inhibitory effect on cancer stem cell markers in breast cancer cells.","authors":"Mohadese Sheikhhosseini, Sara Soltanian, Neda Mohamadi","doi":"10.1080/10837450.2025.2545486","DOIUrl":"10.1080/10837450.2025.2545486","url":null,"abstract":"<p><p>Combination therapy with chemotherapy and phytochemical drugs is a promising cancer treatment method. In this study, noisome with Tween 20, span 40 and cholesterol in 80:20 ration was prepared for co-delivery of piperine (PIP) and doxorubicin (DOX) (Nio-DOX/PIP) using thin-layer hydration method. Niosomes indicated spherical structure, average size 653 ± 3.25 nm and a zeta potential of ∼-15.88 mV with an encapsulation efficiency of 84.15% and 67.50% for DOX and PIP, respectively. Release of DOX (69.25%) and PIP (35.10%) after 24 h from niosomal dispersion is less than free solution that indicate release of drug in a sustained way from niosomes. Combination index and isobologram analysis using CompuSyn software indicated that combination of DOX and PIP at IC<sub>50</sub> concentration generated synergism anticancer effect (CI value <0.9). Nio-DOX/PIP (IC<sub>50</sub>: 0.14/14 µM) exhibited greater inhibitory effect on viability of MCF-7 cells in comparison with free drugs (IC<sub>50</sub>: 0.67/67 µM). Expression analysis using Real time PCR showed that Nio-DOX/PIP reduces expression of CD133 and ABCB (33-fold), CD44 (10-fold), ALDH1: (5.8-fold) and NANOG and SOX2 (more than 90%) significantly more than free DOX. In conclusion, results showed that PIP can potentiate cytotoxicity of DOX and niosomes are suitable carriers for encapsulation of PIP and DOX.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-21"},"PeriodicalIF":2.5,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144812276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design and relative bioperformance of high drug load grazoprevir amorphous nanoparticle formulations. 高载药量Grazoprevir非晶态纳米颗粒的合理设计及相对生物性能研究。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-08-13 DOI: 10.1080/10837450.2025.2544571
Joseph Della Rocca, Cory Bottone, Majid Mahjour, Katherine DiFelice, Angela Wagner, Lee J Klein, Zhen Liu, Ashish Punia, Wei Zhu, Andrew Latham, Robert Saklatvala, John Higgins, W Peter Wuelfing, Wei Xu
{"title":"Rational design and relative bioperformance of high drug load grazoprevir amorphous nanoparticle formulations.","authors":"Joseph Della Rocca, Cory Bottone, Majid Mahjour, Katherine DiFelice, Angela Wagner, Lee J Klein, Zhen Liu, Ashish Punia, Wei Zhu, Andrew Latham, Robert Saklatvala, John Higgins, W Peter Wuelfing, Wei Xu","doi":"10.1080/10837450.2025.2544571","DOIUrl":"10.1080/10837450.2025.2544571","url":null,"abstract":"<p><p>This work looked to determine if a rationally designed amorphous nanoparticle formulation of Grazoprevir (GZP) could provide a benefit over its amorphous dispersion formulation by either enabling superior bioperformance or accessing higher drug loadings. GZP-ethylcellulose nanoparticles were created at two different drug loadings (33 and 66%) by high-pressure homogenization. The GZP-ethylcellulose nanoparticles could rapidly release the drug, but neither system could match the extent of release of the amorphous dispersion. This limited extent of release led to the GZP-ethylcellulose nanoparticle formulations failing to present equivalent performance as the amorphous solid dispersion formulation in dog PK studies. Two GZP- HPMCAS-L nanoparticle formulations (50/50 GZP/HPMCAS-L and 45/45/10 GZP/HPMCAS-L/SLS) were made by a coprecipitation process followed by spray drying. These materials were analyzed and found to be composed of nanoparticles of pure amorphous drug which is stabilized by the excipients. This was confirmed by characterization techniques such as ultracentrifugation and FIB-SEM. Bio-relevant dissolution experiments demonstrated that both formulations could match the extent of drug release of the GZP amorphous dispersion formulation, but only the 45/45/10 GZP/HPMCAS-L/SLS could match the rate of release of the amorphous dispersion. The 45/45/10 GZP/HPMCAS-L/SLS nanoparticle formulation and the amorphous dispersion formulation were evaluated in a dog PK study, with the 45/45/10 GZP/HPMCAS-L/SLS formulation provided equivalent PK. These results highlight the potential benefit of directly designed nanoparticle formulations to maximize formulation bioperformance at higher drug loadings or to enable smaller dosage forms.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-14"},"PeriodicalIF":2.5,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144795069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of sustained release oral disintegrating tablet of fluvoxamine maleate. 马来酸氟伏沙明口服缓释崩解片的研制。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-08-12 DOI: 10.1080/10837450.2025.2546942
Esraa A Shetaa, Mona F Arafa, Sally E Abu-Risha, Gamal M El Maghraby
{"title":"Development of sustained release oral disintegrating tablet of fluvoxamine maleate.","authors":"Esraa A Shetaa, Mona F Arafa, Sally E Abu-Risha, Gamal M El Maghraby","doi":"10.1080/10837450.2025.2546942","DOIUrl":"https://doi.org/10.1080/10837450.2025.2546942","url":null,"abstract":"<p><p>Fluvoxamine maleate is efficient in treatment of depression and obsessive-compulsive disorder. However, it has several side effects which are believed to be minimized by administration of slow-release formulation. This work introduces geriatric friendly rapidly disintegrating sustained release (RDSR) tablets for fluvoxamine intraoral administration. Fluvoxamine was subjected to wet co-processing with increasing weight ratios of Eudragit S100 in presence and absence of avicel. Fluvoxamine release was monitored using continuous pH variation strategy using USP II dissolution apparatus. Formulations exhibiting acceptable sustained release pattern were subjected to different investigations. Optimized systems were fabricated as RDSR tablets. Optimized systems were also assessed in vivo using forced swimming test using albino rats. Incorporation of avicel in the co-processed formulations showed faster release with avicel-free systems sustaining fluvoxamine release. Optimum formulations contained fluvoxamine and Eudragit at weight ratios of 4:12 (F2), 4:15 (F4) and 4:16 (F6) which liberated the drug with release efficiency of 61.65, 41.76 and 34.5%, respectively. Thermal analysis and XRD reflected dispersion of fluvoxamine in amorphous form in Eudragit with no significant chemical interaction being reflected from FTIR. The developed RDSR tablets showed acceptable sustained release. In vivo studies reflected the superiority of sustained release systems compared to unprocessed fluvoxamine. The study developed RDSR tablets for sustained delivery of fluvoxamine.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-15"},"PeriodicalIF":2.5,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144837296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring stabilizing agents to prevent crystal growth or aggregation in PTX-NCs generated via diverse nanocrystallization technologies. 探索稳定剂,以防止晶体生长或聚集的PTX-NCs通过不同的纳米晶化技术。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-08-10 DOI: 10.1080/10837450.2025.2544579
Farzaneh Amiri, Ali Nokhodchi, Mohammad Barzegar-Jalali, Hadi Valizadeh
{"title":"Exploring stabilizing agents to prevent crystal growth or aggregation in PTX-NCs generated <i>via</i> diverse nanocrystallization technologies.","authors":"Farzaneh Amiri, Ali Nokhodchi, Mohammad Barzegar-Jalali, Hadi Valizadeh","doi":"10.1080/10837450.2025.2544579","DOIUrl":"10.1080/10837450.2025.2544579","url":null,"abstract":"<p><p>This study aimed to prepare paclitaxel nanocrystals (PTX-NCs) for developing a delivery platform for this poorly water-soluble drug. Using biocompatible polymers as stabilizers, paclitaxel (PTX) was formulated as a nanosuspension using two techniques: (I) ultrasonication followed by freeze-drying and (II) melt-based precipitation (MBP) approach. The effectiveness of stabilizers in inhibiting crystal growth and agglomeration of PTX-NCs was discussed. Nanosuspensions developed using the MBP method by employing polyethylene glycol (PEG) derivatives offered superior results compared to the ultrasonication method. Among the various stabilizers, Pluronic F-68 and myrj 52 were more efficient against particle size enlargement. The optimized formulation containing PTX/PEG/Pluronic F-68/myrj 52 produced re-dispersible particles of about 74 nm with a smooth spherical morphology, which were stable for ∼8 h in water, indicating good physical stability following reconstitution. The particles obtained after redispersion of MBP-PTX-NCs enhanced the dissolution of PTX compared to plain crystals and had superior chemical stability. A 6-month stability test showed no significant changes in drug content or X-ray powder diffraction (XRPD) pattern. These findings highlighted the potential of forming fine particles from MBP method using biocompatible polymers as a promising method for producing drug nanocrystals (NCs) for poorly soluble drugs without expensive, time-consuming freeze-drying steps.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-18"},"PeriodicalIF":2.5,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144789684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation and characterization of a fixed-dose microemulsion containing efavirenz, emtricitabine, and tenofovir. 含有依非韦伦、恩曲他滨和替诺福韦的固定剂量微乳的配方和特性。
IF 2.5 4区 医学
Pharmaceutical Development and Technology Pub Date : 2025-07-29 DOI: 10.1080/10837450.2025.2537128
Samantha Mabvira, Sandile M Khamanga, Roderick B Walker
{"title":"Formulation and characterization of a fixed-dose microemulsion containing efavirenz, emtricitabine, and tenofovir.","authors":"Samantha Mabvira, Sandile M Khamanga, Roderick B Walker","doi":"10.1080/10837450.2025.2537128","DOIUrl":"10.1080/10837450.2025.2537128","url":null,"abstract":"<p><p>Despite a marked decrease in HIV/AIDS-related mortality, HIV remains one of the leading causes of death in specific populations. Despite concerted efforts to find a cure for HIV, to date, none exists. Current antiretroviral therapy inhibits replication of the virus without completely eradicating it. The successful inhibition of viral replication is only achieved using a combination of antiretrovirals, which inhibit viral replication at different stages of the HIV lifecycle. Efavirenz (EFV), emtricitabine (FTC), and tenofovir disoproxil fumarate (TDF) is one combination used for HIV management. The development of a novel fixed-dose microemulsion formulation of EFV, FTC, and TDF was undertaken. Microemulsions (ME) were manufactured using phase titration and drug loading, particle size, transparency, Zeta potential, and pH were determined. Transmission Electron Microscopy was used to visualize the microemulsion. <i>In vitro</i> release testing was used to evaluate active pharmaceutical ingredient release behavior. The optimized ME had an average Zeta potential of 33.8 mV and droplet size of 117 nm, determined using Dynamic Light Scattering and confirmed using Transmission Electron Microscopy. Powder X-ray diffraction and Differential Scanning Calorimetry analysis revealed the presence of a molecular dispersion of drugs. These findings demonstrate the potential value of using ME as a fixed-dose combination technology for the delivery of EFV, FTC, and TDF.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-16"},"PeriodicalIF":2.5,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144699198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信