Mohadese Sheikhhosseini, Sara Soltanian, Neda Mohamadi
{"title":"利用乳质体共同递送阿霉素和胡椒碱对乳腺癌细胞的肿瘤干细胞标记物具有增强的细胞毒性和抑制作用。","authors":"Mohadese Sheikhhosseini, Sara Soltanian, Neda Mohamadi","doi":"10.1080/10837450.2025.2545486","DOIUrl":null,"url":null,"abstract":"<p><p>Combination therapy with chemotherapy and phytochemical drugs is a promising cancer treatment method. In this study, noisome with Tween 20, span 40 and cholesterol in 80:20 ration was prepared for co-delivery of piperine (PIP) and doxorubicin (DOX) (Nio-DOX/PIP) using thin-layer hydration method. Niosomes indicated spherical structure, average size 653 ± 3.25 nm and a zeta potential of ∼-15.88 mV with an encapsulation efficiency of 84.15% and 67.50% for DOX and PIP, respectively. Release of DOX (69.25%) and PIP (35.10%) after 24 h from niosomal dispersion is less than free solution that indicate release of drug in a sustained way from niosomes. Combination index and isobologram analysis using CompuSyn software indicated that combination of DOX and PIP at IC<sub>50</sub> concentration generated synergism anticancer effect (CI value <0.9). Nio-DOX/PIP (IC<sub>50</sub>: 0.14/14 µM) exhibited greater inhibitory effect on viability of MCF-7 cells in comparison with free drugs (IC<sub>50</sub>: 0.67/67 µM). Expression analysis using Real time PCR showed that Nio-DOX/PIP reduces expression of CD133 and ABCB (33-fold), CD44 (10-fold), ALDH1: (5.8-fold) and NANOG and SOX2 (more than 90%) significantly more than free DOX. In conclusion, results showed that PIP can potentiate cytotoxicity of DOX and niosomes are suitable carriers for encapsulation of PIP and DOX.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-21"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-delivery of doxorubicin and piperine using niosomes exhibited enhanced cytotoxic and inhibitory effect on cancer stem cell markers in breast cancer cells.\",\"authors\":\"Mohadese Sheikhhosseini, Sara Soltanian, Neda Mohamadi\",\"doi\":\"10.1080/10837450.2025.2545486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combination therapy with chemotherapy and phytochemical drugs is a promising cancer treatment method. In this study, noisome with Tween 20, span 40 and cholesterol in 80:20 ration was prepared for co-delivery of piperine (PIP) and doxorubicin (DOX) (Nio-DOX/PIP) using thin-layer hydration method. Niosomes indicated spherical structure, average size 653 ± 3.25 nm and a zeta potential of ∼-15.88 mV with an encapsulation efficiency of 84.15% and 67.50% for DOX and PIP, respectively. Release of DOX (69.25%) and PIP (35.10%) after 24 h from niosomal dispersion is less than free solution that indicate release of drug in a sustained way from niosomes. Combination index and isobologram analysis using CompuSyn software indicated that combination of DOX and PIP at IC<sub>50</sub> concentration generated synergism anticancer effect (CI value <0.9). Nio-DOX/PIP (IC<sub>50</sub>: 0.14/14 µM) exhibited greater inhibitory effect on viability of MCF-7 cells in comparison with free drugs (IC<sub>50</sub>: 0.67/67 µM). Expression analysis using Real time PCR showed that Nio-DOX/PIP reduces expression of CD133 and ABCB (33-fold), CD44 (10-fold), ALDH1: (5.8-fold) and NANOG and SOX2 (more than 90%) significantly more than free DOX. In conclusion, results showed that PIP can potentiate cytotoxicity of DOX and niosomes are suitable carriers for encapsulation of PIP and DOX.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2545486\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2545486","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Co-delivery of doxorubicin and piperine using niosomes exhibited enhanced cytotoxic and inhibitory effect on cancer stem cell markers in breast cancer cells.
Combination therapy with chemotherapy and phytochemical drugs is a promising cancer treatment method. In this study, noisome with Tween 20, span 40 and cholesterol in 80:20 ration was prepared for co-delivery of piperine (PIP) and doxorubicin (DOX) (Nio-DOX/PIP) using thin-layer hydration method. Niosomes indicated spherical structure, average size 653 ± 3.25 nm and a zeta potential of ∼-15.88 mV with an encapsulation efficiency of 84.15% and 67.50% for DOX and PIP, respectively. Release of DOX (69.25%) and PIP (35.10%) after 24 h from niosomal dispersion is less than free solution that indicate release of drug in a sustained way from niosomes. Combination index and isobologram analysis using CompuSyn software indicated that combination of DOX and PIP at IC50 concentration generated synergism anticancer effect (CI value <0.9). Nio-DOX/PIP (IC50: 0.14/14 µM) exhibited greater inhibitory effect on viability of MCF-7 cells in comparison with free drugs (IC50: 0.67/67 µM). Expression analysis using Real time PCR showed that Nio-DOX/PIP reduces expression of CD133 and ABCB (33-fold), CD44 (10-fold), ALDH1: (5.8-fold) and NANOG and SOX2 (more than 90%) significantly more than free DOX. In conclusion, results showed that PIP can potentiate cytotoxicity of DOX and niosomes are suitable carriers for encapsulation of PIP and DOX.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.