{"title":"采用多聚物方法快速溶解 PVP-I 粉末的机理特征及其分子相互作用研究。","authors":"Maytawee Wutthichokmongkhonkul, Rutthapol Sritharadol, Teerapol Srichana","doi":"10.1080/10837450.2024.2428772","DOIUrl":null,"url":null,"abstract":"<p><p>Povidone-iodine (PVP-I) is widely used as an antiseptic in medical applications. However, its effectiveness is limited by certain drawbacks, such as low solubility in water and high volatility. Therefore, a formulation of a stable solid PVP-I is desirable. In this study, complexes of molecular PVP-I with polyethylene glycol-polyvinyl alcohol copolymer (PEG-PVA copolymer) were considered water-soluble iodophors. Two different methods were used to prepare the solids: physical mixtures and kneading. The physical characteristics of the obtained solids were evaluated using several spectroscopic methods. The presence of iodine was confirmed by a potentiometric titration and antimicrobial activity was tested. The results showed that the PEG-PVA copolymer interacted with povidone primarily through hydrogen bonding between the hydroxyl part of the PEG-PVA copolymer and the amide part of povidone with an estimated binding energy of 3.2 kcal/mol. The amide groups polarity in povidone made them more likely to form hydrogen bonds with the PEG-PVA copolymer. Also, the protonated pyrrolidone bonded to the triiodide anions by intermolecular hydrogen bonds, which increased PVP-I solubility in water. The kneading method provided a faster dissolution rate than physical mixing and pure PVP-I. The iodine contents were within an acceptable range (10-12%), and the antimicrobial activity proved effective against <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, and <i>Streptococcus mutans</i>.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1162-1174"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic characterization of fast dissolving PVP-I powder with multipolymer approaches and investigation on their molecular interaction.\",\"authors\":\"Maytawee Wutthichokmongkhonkul, Rutthapol Sritharadol, Teerapol Srichana\",\"doi\":\"10.1080/10837450.2024.2428772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Povidone-iodine (PVP-I) is widely used as an antiseptic in medical applications. However, its effectiveness is limited by certain drawbacks, such as low solubility in water and high volatility. Therefore, a formulation of a stable solid PVP-I is desirable. In this study, complexes of molecular PVP-I with polyethylene glycol-polyvinyl alcohol copolymer (PEG-PVA copolymer) were considered water-soluble iodophors. Two different methods were used to prepare the solids: physical mixtures and kneading. The physical characteristics of the obtained solids were evaluated using several spectroscopic methods. The presence of iodine was confirmed by a potentiometric titration and antimicrobial activity was tested. The results showed that the PEG-PVA copolymer interacted with povidone primarily through hydrogen bonding between the hydroxyl part of the PEG-PVA copolymer and the amide part of povidone with an estimated binding energy of 3.2 kcal/mol. The amide groups polarity in povidone made them more likely to form hydrogen bonds with the PEG-PVA copolymer. Also, the protonated pyrrolidone bonded to the triiodide anions by intermolecular hydrogen bonds, which increased PVP-I solubility in water. The kneading method provided a faster dissolution rate than physical mixing and pure PVP-I. The iodine contents were within an acceptable range (10-12%), and the antimicrobial activity proved effective against <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, and <i>Streptococcus mutans</i>.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1162-1174\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2428772\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2428772","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Mechanistic characterization of fast dissolving PVP-I powder with multipolymer approaches and investigation on their molecular interaction.
Povidone-iodine (PVP-I) is widely used as an antiseptic in medical applications. However, its effectiveness is limited by certain drawbacks, such as low solubility in water and high volatility. Therefore, a formulation of a stable solid PVP-I is desirable. In this study, complexes of molecular PVP-I with polyethylene glycol-polyvinyl alcohol copolymer (PEG-PVA copolymer) were considered water-soluble iodophors. Two different methods were used to prepare the solids: physical mixtures and kneading. The physical characteristics of the obtained solids were evaluated using several spectroscopic methods. The presence of iodine was confirmed by a potentiometric titration and antimicrobial activity was tested. The results showed that the PEG-PVA copolymer interacted with povidone primarily through hydrogen bonding between the hydroxyl part of the PEG-PVA copolymer and the amide part of povidone with an estimated binding energy of 3.2 kcal/mol. The amide groups polarity in povidone made them more likely to form hydrogen bonds with the PEG-PVA copolymer. Also, the protonated pyrrolidone bonded to the triiodide anions by intermolecular hydrogen bonds, which increased PVP-I solubility in water. The kneading method provided a faster dissolution rate than physical mixing and pure PVP-I. The iodine contents were within an acceptable range (10-12%), and the antimicrobial activity proved effective against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus mutans.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.