{"title":"Homogeneous <i>Polyporus</i> polysaccharide exerts anti-bladder cancer effects via autophagy induction.","authors":"Siwan Luo, Xiaopeng Huang, Shiqi Li, Yuwen Chen, Xian Zhang, Xing Zeng","doi":"10.1080/13880209.2024.2316195","DOIUrl":"10.1080/13880209.2024.2316195","url":null,"abstract":"<p><strong>Context: </strong>Polyporus polysaccharide (PPS), the leading bioactive ingredient extracted from <i>Polyporus umbellatus</i> (Pers.) Fr. (Polyporaceae), has been demonstrated to exert anti-bladder cancer and immunomodulatory functions in macrophages.</p><p><strong>Objective: </strong>To explore the effects of homogeneous Polyporus polysaccharide (HPP) on the proliferation and autophagy of bladder cancer cells co-cultured with macrophages.</p><p><strong>Materials and methods: </strong>MB49 bladder cancer cells and RAW264.7 macrophages were co-cultured with or without HPP intervention (50, 100, or 200 μg/mL) for 24 h. The cell counting kit-8 (CCK-8) assay and 5-ethynyl-2″-deoxyuridine (EdU) staining evaluated MB49 cell proliferation. Monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM) observed autophagosomes. Western blotting detected the expression levels of autophagy-related proteins and PI3K/Akt/mTOR pathway proteins.</p><p><strong>Results: </strong>HPP inhibited the proliferation of MB49 cells co-cultured with RAW264.7 cells but not MB49 cells alone. HPP altered the expression of autophagy-related proteins and promoted the formation of autophagosomes in MB49 cells in the co-culture system. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) not only antagonized HPP-induced autophagy but also attenuated the inhibitory effects of HPP on MB49 cell proliferation in the co-culture system. HPP or RAW264.7 alone was not sufficient to induce autophagy in MB49 cells. In addition, HPP suppressed the protein expression of the PI3K/Akt/mTOR pathway in MB49 cells in the co-culture system.</p><p><strong>Discussion and conclusions: </strong>HPP induced bladder cancer cell autophagy by regulating macrophages in the co-culture system, resulting in the inhibition of cancer cell proliferation. The PI3K/Akt/mTOR pathway was involved in HPP-induced autophagy in the co-culture system.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"214-221"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2024-12-01Epub Date: 2024-10-25DOI: 10.1080/13880209.2024.2415666
Jin Dai, Xinbin Zhou, Xiaoming Xu, Yuangang Qiu, Shenjie Chen, Wei Mao
{"title":"Study on the anti-atherosclerosis mechanisms of Tanyu Tongzhi formula based on network pharmacology, Mendelian randomization, and experimental verification.","authors":"Jin Dai, Xinbin Zhou, Xiaoming Xu, Yuangang Qiu, Shenjie Chen, Wei Mao","doi":"10.1080/13880209.2024.2415666","DOIUrl":"10.1080/13880209.2024.2415666","url":null,"abstract":"<p><strong>Context: </strong>Tanyu Tongzhi Formula (TTF) exhibits potential against atherosclerosis; however, its mechanisms remain unclear.</p><p><strong>Objective: </strong>This study explores the pharmacological mechanisms of TTF in treating atherosclerosis.</p><p><strong>Materials and methods: </strong>Network pharmacology, molecular docking, mendelian randomization (MR), and liquid chromatography-mass spectrometry (LC-MS) analyses were utilized to reveal potential targets and compounds of TTF against atherosclerosis. After exploring the appropriate concentration of TTF to treat HCAECs using Cell Counting Kit-8 (CCK-8), the HCAECs were divided into three groups: control, oxidized low-density lipoprotein (ox-LDL, 50 μg/mL), and ox-LDL (50 μg/mL) + TTF (1 mg/mL). After 24-h incubation, the efficacy of TTF was verified by CCK-8, Oil red O staining, and ELISA. The expression of key targets was detected by real-time polymerase chain reaction (qPCR) and western blotting.</p><p><strong>Results: </strong>A total of 137 active compounds and 127 potential TTF targets against atherosclerosis were identified. MR identified ALB, TNF, PPARα, and PPARγ as key targets. Molecular docking indicated that baicalin, naringenin, and curcumin exhibited suitable binding activities to these targets, further confirming by LC-MS analysis. The IC<sub>50</sub> of TTF in HCAECs was 18.25 mg/mL. TTF treatment significantly improved atherosclerosis by enhancing cell viability, reducing lipid accumulation, and inhibiting inflammation factors (IL6, IL1B and TNF-α) in ox-LDL-treated HCAECs. Moreover, qPCR or western blotting indicated that TTF could up-regulate PPARα and PPARγ while down-regulate TNF expression.</p><p><strong>Discussion and conclusions: </strong>Our results revealed active compounds, key pathways, and core targets of TTF against atherosclerosis, providing experimental support for its application in treating of atherosclerosis.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"790-802"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2024-12-01Epub Date: 2024-10-26DOI: 10.1080/13880209.2024.2415643
Guanzhou Ma, Yang Jin
{"title":"Therapeutic efficacy and pharmacological mechanism of Bailing capsule on chronic obstructive pulmonary disease: a meta-analysis and network pharmacology.","authors":"Guanzhou Ma, Yang Jin","doi":"10.1080/13880209.2024.2415643","DOIUrl":"10.1080/13880209.2024.2415643","url":null,"abstract":"<p><strong>Context: </strong>Bailing capsule, derived from <i>Cordyceps sinensis</i> (Berk.) Sacc. (Clavicipitaceae), has shown potential in the treatment of chronic obstructive pulmonary disease (COPD), a prevalent respiratory disorder.</p><p><strong>Objective: </strong>This study elucidates the efficacy and mechanism of action of the use of Bailing capsules in the treatment of COPD using meta-analysis and network pharmacology.</p><p><strong>Materials and methods: </strong>A meta-analysis of randomized controlled trials (RCTs) was performed. The treatment group received Bailing capsules alongside standard therapy, while the control group received standard therapy or in combination with other traditional Chinese medicines. Efficacy outcomes included lung function, exercise tolerance, acute exacerbation risk, and quality of life. Network pharmacology and molecular docking identified key targets of Bailing capsules.</p><p><strong>Results: </strong>The meta-analysis of 27 RCTs showed significant improvements in the treatment group for forced expiratory volume in 1 s (FEV1), FEV1/FVC ratio, and the 6-min walk test (6MWT). Additionally, there was a marked reduction in acute COPD attacks and an improvement in quality of life. Meanwhile, network pharmacological analysis identified SRC, HIF1A, NFKB1, HDAC2, and PRKACA, as the potential core targets for Bailing capsules in the treatment of COPD.</p><p><strong>Discussion and conclusion: </strong>Bailing capsules have shown promising results in the treatment of stable COPD. Future studies should focus on large-scale, multicenter RCTs to confirm the long-term benefits and safety of Bailing capsules.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"803-817"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative efficacy and safety of Chinese patent medicines as an adjunctive therapy for diabetic peripheral neuropathy: systematic review and network meta-analysis of randomized controlled trials.","authors":"Qun Wang, Hui Xie, Zihong Wang, Runyun Huang, Min Xu, Yongjun Li, Lingling Shan, Hongyan Zhang, Xianghong Liu, Hongxing Zhang, Yunsheng Xu, Shiguang Sun","doi":"10.1080/13880209.2024.2422084","DOIUrl":"10.1080/13880209.2024.2422084","url":null,"abstract":"<p><strong>Context: </strong>Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Chinese patent medicines (CPMs) are widely used in clinical practice to treat DPN.</p><p><strong>Objective: </strong>This study aims to summarize the latest evidence on the harms and benefits of CPMs as adjunctive therapy for DPN.</p><p><strong>Materials and methods: </strong>We conducted searches for randomized controlled trials (RCTs) evaluating CPMs in conjunction with mecobalamin (Mec) or alpha-lipoic acid (αLA) across eight databases up to July 2024. The surface under the cumulative ranking area (SUCRA) was utilized to assess the clinical efficacy rate (CER), the peroneal motor nerve conduction velocity (pMNCV), the peroneal sensory nerve conduction velocity (pSNCV), the median motor nerve conduction velocity (mMNCV), and the median sensory nerve conduction velocity (mSNCV).</p><p><strong>Results: </strong>The search yielded 128 eligible studies with 31 CPMs with Mec and 39 eligible studies with 17 CPMs with αLA. SUCRA rankings indicated that, when combined with Mec, <i>Mailuoning</i> liquid (lMLN) was the most effective regimen for CER, <i>Honghua</i> injection (iHH) for pMNCV, <i>Maixuekang</i> capsule (cMXK) for pSNCV, <i>Dengzhanxixin</i> injection (iDZXX) for mMNCV, and <i>Tongxinluo</i> capsule (cTXL) for mSNCV. Combined with αLA, <i>Danhong</i> injection (iDH) showed the highest efficacy for CER, pSNCV, and mSNCV, while <i>Xueshuantong</i> injection (iXShT) was the most effective for pMNCV and mMNCV.</p><p><strong>Conclusion: </strong>This network meta-analysis confirms the efficacy and safety of 37 CPMs combined with Mec or αLA for treating DPN. However, given the potential risk of bias and the very low certainty of the evidence, these recommendations should be adopted with caution.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"833-852"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment.","authors":"Shiyi Shen, Huiyun Zhong, Xiaoshi Zhou, Guolin Li, Changji Zhang, Yulian Zhu, Yong Yang","doi":"10.1080/13880209.2024.2314705","DOIUrl":"10.1080/13880209.2024.2314705","url":null,"abstract":"<p><strong>Context: </strong>Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD.</p><p><strong>Objective: </strong>This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation.</p><p><strong>Methods: </strong>The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment.</p><p><strong>Results and conclusions: </strong>The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"222-232"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139735786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of a sensitive and reliable UPLC-MS/MS method to simultaneously quantify almonertinib and HAS-719 and its application to study the interaction with nicardipine.","authors":"Dongxin Chen, Jie Chen, Yuxin Shen, Xiaohai Chen, Hailun Xia, Ya-Nan Liu, Ren-Ai Xu","doi":"10.1080/13880209.2024.2425648","DOIUrl":"10.1080/13880209.2024.2425648","url":null,"abstract":"<p><strong>Context: </strong>Almonertinib is primarily metabolized by CYP3A4, so it could interact with a variety of drugs metabolized by CYP3A4, leading to the changes of systemic exposure.</p><p><strong>Objective: </strong>For the purpose of this experiment, an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay with accuracy and simplicity was optimized and fully validated for the simultaneous quantitative determination of almonertinib and its metabolite HAS-719, and drug-drug interactions (DDI) between almonertinib and nicardipine <i>in vivo</i> and <i>in vitro</i> was researched.</p><p><strong>Materials and methods: </strong>Detection of analytes was achieved by UPLC-MS/MS coupled with multiple reaction monitoring (MRM) in the positive ion mode with ion transitions of <i>m/z</i> 526.01 → 72.04 for almonertinib, <i>m/z</i> 512.18 → 455.08 for HAS-719 and <i>m/z</i> 447.16 → 128.11 for IS, respectively.</p><p><strong>Results: </strong>There was favourable linearity in the 0.5-200 ng/mL calibration range for almonertinib and 0.5-100 ng/mL for HAS-719. The lower limit of quantification (LLOQ) for both analytes was 0.5 ng/mL. The precision, accuracy, stability, matrix effect and extraction recovery required for methodological validation were consistent with the requirements of FDA guideline. Then, the UPLC-MS/MS assay was employed successfully on the interactions of almonertinib and nicardipine <i>in vivo</i> and <i>in vitro</i>. The half-maximal inhibitory concentration (IC<sub>50</sub>) was 1.19 μM in rat liver microsomes (RLM), where nicardipine inhibited the metabolism of almonertinib with a mixed inhibitory mechanism. In pharmacokinetic experiments of rats, it was observed that nicardipine could significantly alter the pharmacokinetic profiles of almonertinib, including AUC<sub>(0-∞),</sub> AUC<sub>(0-t)</sub> and C<sub>max</sub>, but had no effect on the metabolism of HAS-719.</p><p><strong>Conclusion: </strong>According to the findings, it was indicated that nicardipine could inhibit the metabolism of almonertinib <i>in vitro and in vivo</i>.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"874-881"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2024-12-01Epub Date: 2024-03-31DOI: 10.1080/13880209.2024.2330609
Jun Chen, Wenyi Ye
{"title":"Molecular mechanisms underlying Tao-Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification.","authors":"Jun Chen, Wenyi Ye","doi":"10.1080/13880209.2024.2330609","DOIUrl":"10.1080/13880209.2024.2330609","url":null,"abstract":"<p><strong>Context: </strong>Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options.</p><p><strong>Objective: </strong>This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms.</p><p><strong>Materials and methods: </strong>We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an <i>in vitro</i> hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting.</p><p><strong>Results: </strong>ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC<sub>50</sub>) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells.</p><p><strong>Discussion and conclusion: </strong>THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"296-313"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detoxification of paraoxon-ethyl by <i>Lysiphyllum strychnifolium</i> extracts in undifferentiated human neuroblastoma SH-SY5Y cells.","authors":"Niramai Ekaratcharoenchai, Thararat Nualsanit, Aungkana Krajarng","doi":"10.1080/13880209.2024.2430262","DOIUrl":"10.1080/13880209.2024.2430262","url":null,"abstract":"<p><strong>Context: </strong><i>Lysiphyllum strychnifolium</i> (Craib) A. Schmitz. (Fabaceae) is a Thai traditional medicine used to remove food and alcohol toxins from the body.</p><p><strong>Objective: </strong>This study investigates the molecular mechanism of <i>L. strychnifolium</i> extracts against paraoxon-ethyl-induced apoptosis in SH-SY5Y cells.</p><p><strong>Materials and methods: </strong>The ethanol and water extracts of leaves and stems of <i>L. strychnifolium</i> were prepared at various concentrations (0-100 μg/mL) and co-treated to the cells with 0.375 mM paraoxon-ethyl for 24 and 48 h. Cell viability was performed using the PrestoBlue assay. ROS and caspase activity were detected using 2',7'-dichlorodihydrofluorecein diacetate and caspase-Glo® 3/7, 8, and 9 assay kits. Apoptotic and ER stress-related gene expression were determined by real-time PCR, and nuclear and mitochondrial morphology were observed using Hoechst 33342 and MitoTracker® Deep Red FM staining.</p><p><strong>Results: </strong>The most effective concentrations of each extract against paraoxon-ethyl-induced cell death were 25 μg/mL of leaf ethanol, 12.5 μg/mL of stem ethanol, 100 μg/mL of leaf water, and 25 μg/mL of stem water extracts. The leaf ethanol extract was the most effective at detoxifying, while stem extracts were highly toxic in high doses. The detoxifying <i>L. strychnifolium</i> extracts against paraoxon-ethyl-induced oxidative stress decreased <i>p53, BiP/GRP78</i>, and <i>CHOP</i> gene expression and minimized caspase 9 and caspase 3, protecting cells from apoptosis. The extracts could also restore mitochondrial membrane potential and reduce the swollen globule mitochondrial shape.</p><p><strong>Discussion and conclusion: </strong>These findings could potentially protect neuron cells from neurodegenerative issues due to oxidative damage, apoptosis, and other potential consequences.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"882-891"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evidence of traditional Chinese medicine for treating type 2 diabetes mellitus: from molecular mechanisms to clinical efficacy.","authors":"Yadong Ni, Xianglong Wu, Wenhui Yao, Yuna Zhang, Jie Chen, Xuansheng Ding","doi":"10.1080/13880209.2024.2374794","DOIUrl":"10.1080/13880209.2024.2374794","url":null,"abstract":"<p><strong>Context: </strong>The global prevalence of type 2 diabetes mellitus (T2DM) has increased significantly in recent decades. Despite numerous studies and systematic reviews, there is a gap in comprehensive and up-to-date evaluations in this rapidly evolving field.</p><p><strong>Objective: </strong>This review provides a comprehensive and current overview of the efficacy of Traditional Chinese Medicine (TCM) in treating T2DM.</p><p><strong>Methods: </strong>A systematic review was conducted using PubMed, Web of Science, Wanfang Data, CNKI, and Medline databases, with a search timeframe extending up to November 2023. The search strategy involved a combination of subject terms and free words in English, including 'Diabetes,' 'Traditional Chinese Medicine,' 'TCM,' 'Hypoglycemic Effect,' 'Clinical Trial,' and 'Randomized Controlled Trial.' The studies were rigorously screened by two investigators, with a third investigator reviewing and approving the final selection based on inclusion and exclusion criteria.</p><p><strong>Results: </strong>A total of 108 relevant papers were systematically reviewed. The findings suggest that TCMs not only demonstrate clinical efficacy comparable to existing Western medications in managing hypoglycemia but also offer fewer adverse effects and a multitarget therapeutic approach. Five main biological mechanisms through which TCM treats diabetes were identified: improving glucose transport and utilization, improving glycogen metabolism, promoting GLP-1 release, protecting pancreatic islets from damage, and improving intestinal flora.</p><p><strong>Conclusions: </strong>TCM has demonstrated significant protective effects against diabetes and presents a viable option for the prevention and treatment of T2DM. These findings support the further exploration and integration of TCM into broader diabetes management strategies.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"592-606"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pharmaceutical BiologyPub Date : 2024-12-01Epub Date: 2024-07-22DOI: 10.1080/13880209.2024.2378012
Liya Liu, Youqin Chen, Yuying Han, Xinran Zhang, Yulun Wu, Jing Lin, Liujing Cao, Meizhu Wu, Huifang Zheng, Yi Fang, Lihui Wei, Thomas J Sferra, Anjum Jafri, Xiao Ke, Jun Peng, Aling Shen
{"title":"Qing Hua Chang Yin ameliorates chronic colitis in mice by inhibiting PERK-ATF4-CHOP pathway of ER stress and the NF-κB signalling pathway.","authors":"Liya Liu, Youqin Chen, Yuying Han, Xinran Zhang, Yulun Wu, Jing Lin, Liujing Cao, Meizhu Wu, Huifang Zheng, Yi Fang, Lihui Wei, Thomas J Sferra, Anjum Jafri, Xiao Ke, Jun Peng, Aling Shen","doi":"10.1080/13880209.2024.2378012","DOIUrl":"10.1080/13880209.2024.2378012","url":null,"abstract":"<p><strong>Context: </strong>Ulcerative colitis has been clinically treated with Qing Hua Chang Yin (QHCY), a traditional Chinese medicine formula. However, its precise mechanisms in mitigating chronic colitis are largely uncharted.</p><p><strong>Objective: </strong>To elucidate the therapeutic efficiency of QHCY on chronic colitis and explore its underlying molecular mechanisms.</p><p><strong>Materials and methods: </strong>A total ion chromatogram fingerprint of QHCY was analysed. Chronic colitis was induced in male C57BL/6 mice using 2% dextran sodium sulphate (DSS) over 49 days. Mice were divided into control, DSS, DSS + QHCY (0.8, 1.6 and 3.2 g/kg/d dose, respectively) and DSS + mesalazine (0.2 g/kg/d) groups (<i>n</i> = 6). Mice were intragastrically administered QHCY or mesalazine for 49 days. The changes of disease activity index (DAI), colon length, colon histomorphology and serum pro-inflammatory factors in mice were observed. RNA sequencing was utilized to identify the differentially expressed transcripts (DETs) in colonic tissues and the associated signalling pathways. The expression of endoplasmic reticulum (ER) stress-related protein and NF-κB signalling pathway-related proteins in colonic tissues was detected by immunohistochemistry staining.</p><p><strong>Results: </strong>Forty-seven compounds were identified in QHCY. Compared with the DSS group, QHCY significantly improved symptoms of chronic colitis like DAI increase, weight loss, colon shortening and histological damage. It notably reduced serum levels of IL-6, IL-1β and TNF-α. QHCY suppressed the activation of PERK-ATF4-CHOP pathway of ER stress and NF-κB signalling pathways in colonic tissues.</p><p><strong>Discussion and conclusions: </strong>The findings in this study provide novel insights into the potential of QHCY in treating chronic colitis patients.</p>","PeriodicalId":19942,"journal":{"name":"Pharmaceutical Biology","volume":"62 1","pages":"607-620"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}