Ore Geology Reviews最新文献

筛选
英文 中文
Rb enrichment processes in highly evolved granites: Insights from mica and K-feldspar from the Baishitouquan pluton, Eastern Tianshan 高度演化花岗岩中的铷富集过程:从东天山白石头泉岩体的云母和钾长石中获得的启示
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-22 DOI: 10.1016/j.oregeorev.2024.106301
{"title":"Rb enrichment processes in highly evolved granites: Insights from mica and K-feldspar from the Baishitouquan pluton, Eastern Tianshan","authors":"","doi":"10.1016/j.oregeorev.2024.106301","DOIUrl":"10.1016/j.oregeorev.2024.106301","url":null,"abstract":"<div><div>Highly evolved granites are closely related to rare metal mineralization. The mechanisms controlling rare metal enrichment, however, remain poorly constrained. The highly evolved Baishitouquan (BST) pluton in the Eastern Tianshan, which hosts the Zhangbaoshan Rb deposit, has been well characterized and provides an excellent opportunity to study Rb enrichment processes in granitic systems. The BST pluton has five lithological zones, which, from bottom to top, are leucogranite (Zone-a), amazonite-bearing granite (Zone-b), amazonite granite (Zone-c), topaz-bearing amazonite granite (Zone-d), and topaz albite granite (Zone-e). To investigate Rb enrichment processes in the BST pluton, compositional variations in K(–Rb)-rich minerals from the different lithological zones are characterized and interpreted in the context of textural variations. The main K- and Rb-bearing minerals in the pluton are mica and K-feldspar, which are mainly represented by phengite and microcline, respectively. Phengite in Zone-e occurs as euhedral grains with irregular boundaries, indicating that they crystalized from the Baishitouquan magma and were overprinted by hydrothermal fluids. Phengite is generally enriched in F (1.05–9.94 wt%), Li (780–10171 ppm), and Rb (3133–6657 ppm), and is characterized by low K/Rb and Nb/Ta ratios. Most microcline grains occur as elongate, euhedral–subhedral laths, with tartan and Carlsbad twinning. These microcline grains are enriched in Rb (1547–2927 ppm), Pb (15–120 ppm), and Cs (14–100 ppm), and have low K/Rb and Al/Ga ratios. In the BST pluton, the concentrations of Li, F, and Rb in phengite increase from Zone-a to Zone-c, then decrease in Zone-d and Zone-e. Conversely, the K/Rb and Nb/Ta ratios decrease from Zone-a to Zone-c, then increase in Zone-d and Zone-e. The Rb concentration and K/Rb ratio of microcline exhibit a similar trend. Considering the gradual changes in lithology among the zones, the variations of mineral chemical from Zone-a to Zone-c implies continuous evolution of the magma dominated by crystal fractionation. The occurrence of secondary mica, and the abrupt geochemical changes in phengite and microcline in Zone-d and Zone-e are indicative of hydrothermal activity. The gradual decrease in Al/Ga ratio of microcline from Zone-d to Zone-e and the presence of secondary mica that is compositionally similar to primary mica suggests that the fluids were magmatic in origin. During magmatic evolution, volatile-rich (e.g., F) melts have lower viscosities and solidus temperatures than volatile-poor melts, allowing them to undergo extreme degrees of fractional crystallization. This significantly enhances the solubility of Rb, leading to continuous enrichment of Rb in the residual melt. As the BST system evolved from one dominated by magmatic processes to one dominated by hydrothermal activity, the crystallization of topaz consumed F, reducing the solubility of Rb in the melt, and leading to a decrease in the concentration ","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic relationship between W mineralization and granitic intrusion in Nanling Region, South China: Constraints from zircon and cassiterite u-pb age from new drill holes in Shangping deposit 华南南岭地区W矿化与花岗岩侵入体的成因关系:来自上坪矿床新钻孔的锆石和锡石u-pb年龄的制约因素
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-21 DOI: 10.1016/j.oregeorev.2024.106295
{"title":"Genetic relationship between W mineralization and granitic intrusion in Nanling Region, South China: Constraints from zircon and cassiterite u-pb age from new drill holes in Shangping deposit","authors":"","doi":"10.1016/j.oregeorev.2024.106295","DOIUrl":"10.1016/j.oregeorev.2024.106295","url":null,"abstract":"<div><div>The Nanling metallogenic belt is known for the widely development of typical quartz vein type W deposit. These quartz veins that contain wolframite are frequently located in close proximity to granitic intrusions. The genetic relationship between tungsten mineralization and the associated granitic rocks is still a subject of controversy. The Shangping deposit stands out as a historically significant W deposit with a quartz vein type in the region of Nanling. However, the specific time that W mineralization occurred remains enigmatic. Granitic intrusions are absent from the mine and only granite porphyry dike is exposed, so the link between tungsten mineralization and magmatic activity remains unclear. Fortunately, in recent years, a concealed granite intrusive has been exposed in drill holes in the southeastern of the Shangping W deposit. To comprehensively address the connection between granitic magma activity and W mineralization, it is vital to make up a relative deficiency of geochronological information on granite and ore mineral. Here, in order to get the first direct age constraints on the origin of the Shangping W deposit, we use a combination of different techniques, incorporating the Hf isotope geochemistry of zirconium and cassiterite U-Pb assessment using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Based on these robust data, we tentatively evaluated the connection between W mineralization and granitic intrusion.For the granite porphyry, the majority of representative U-Pb zircon assays establish a<!--> <sup>206</sup>Pb/<sup>238</sup>U age of 150.2 ± 0.5 Ma. An inferred emplacement age of ca. 151 Ma for the concealed granite in Kengweiwo is supported by a U-Pb isochron age from zircon. Combined with Hf isotopic characterization, it illuminates the mineralization potential of the Kengweiwo concealed granite. Cassiterite grains from hydrothermal quartz vein are subhedral to anhedral and have a lower intercept <sup>206</sup>Pb/<sup>238</sup>U age of 153.9 ± 1.0 Ma. For the Shangping W deposit, all of these new geochronological dates provide well-constrained mineralization ages of 150–154 Ma. The dates of the concealed granite in the Kengweiwo area and the tungsten mineralization in the Shangping area are extremely concordant, indicating that they occurred roughly concurrently. The vein type tungsten mineralization in Shangping deposit may has a genetic link with crystallization of uncovered granite present at depth, which requires further investigation. These results emphasize the significance and potential of concealed granitic intrusion to host disseminated W mineralization in the deep part of Shangping deposit.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genesis of the Kateba’asu gold deposit, Western Tianshan, China: Constraints from pyrite trace element, sulfur isotope, and quartz H-O isotopes 中国天山西部凯特巴苏金矿床的成因:黄铁矿微量元素、硫同位素和石英 H-O 同位素的制约因素
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-21 DOI: 10.1016/j.oregeorev.2024.106299
{"title":"Genesis of the Kateba’asu gold deposit, Western Tianshan, China: Constraints from pyrite trace element, sulfur isotope, and quartz H-O isotopes","authors":"","doi":"10.1016/j.oregeorev.2024.106299","DOIUrl":"10.1016/j.oregeorev.2024.106299","url":null,"abstract":"<div><div>The Kateba’asu gold deposit, situated in the Western Tianshan of China, is one of the most significant discoveries in the world-class Tianshan gold belt. The deposit features two distinct mineralization styles. The early, subordinate skarn-type copper–gold mineralization occurs in the contact zone between monzogranite, diorite, and Silurian limestone, composed of garnet, diopside, epidote, chalcopyrite, pyrite, and gold. The later, primary lode-gold mineralization is hosted in the altered monzogranite characterized by pervasive quartz-pyrite-sericite-chlorite-K-feldspar alteration and a well-develped veining systems.</div><div>Pyrite is the dominant sulfide mineral related to gold mineralization in the Kateba’asu gold deposit, with four types identified: Py0 from the early skarn copper–gold mineralization, and Py1 to Py3 from the later lode-gold mineralization. All types of pyrite are homogeneous and contain very low levels of lattice-bound gold. Py0 is euhedral and fine-grained, with relatively high Cu, Au, Co, and Ni contents, and displays a magmatic sulfur isotopic signature with δ<sup>34</sup>S ranging from 0.8 to 4.3 ‰. Py1 occurs as euhedral to subhedral, coarse-grained crystals within pyrite-quartz veins with higher concentrations of Co and Ni. Py2, which develops in the quartz-pyrite veins, is medium to coarse-grained and contains elevated levels of As, Cu, Zn, and Bi relative to Py1. Py3, found in polymetallic sulfide veins of the main lode-gold stage, is anhedral and medium to fine-grained with higher contents of As, Ag, Cu, Zn, Se, Te and lowest Co and Ni concentrations compared to Py1 and Py2. The positive correlations between Au-Te, Au-Bi, Au-Cu, and Pb-Bi across all pyrite types, along with the presence of visible gold in Py3, indicate that most gold occurs as micro-/nano-sized inclusions and as fissure gold. The δ<sup>34</sup>S values of Py1, Py2, and Py3 (7.6 to 11.8 ‰, 10.1 to 12.6 ‰, and 9.8 to 12.4 ‰, respectively) were attributed to an initial magmatic source and mixed with external sulfur subsequently from the wall rocks. The H and O isotopic compositions (δD<sub>H2O</sub> = −84.1 to −93.5 ‰; δ<sup>18</sup>O<sub>H2O</sub> = 1.8 to 6.6 ‰) of quartz from the lode-gold mineralization imply that ore-forming fluids were predominantly of magmatic origin, with a additional contribution from meteoric water. Taken together, a two-episode mineralization model was proposed for the formation of the Kateba’asu gold deposit. The early skarn mineralization stage is associated with the emplacement of diorite during the Early Carboniferous. In contrast, the subsequent lode-gold mineralization, occurring between the Late Carboniferous and Permian periods, represents a overprinted magmatic-hydrothermal gold system potentially linked to a deep-seated magmatic intrusion.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer of rare earth elements from clay-sized fraction to phosphate in East South Pacific Ocean: Implication for REY-rich sediment related to hydrothermal influence 南太平洋东部稀土元素从粘土颗粒向磷酸盐的转移:热液影响对富含稀土元素沉积物的影响
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-20 DOI: 10.1016/j.oregeorev.2024.106294
{"title":"Transfer of rare earth elements from clay-sized fraction to phosphate in East South Pacific Ocean: Implication for REY-rich sediment related to hydrothermal influence","authors":"","doi":"10.1016/j.oregeorev.2024.106294","DOIUrl":"10.1016/j.oregeorev.2024.106294","url":null,"abstract":"<div><div>Pelagic sediment enriched in critical metals (e.g. rare earth elements and yttrium, REY) has attracted much attention in recent years. Extensive research has focused on identifying the specific host mineral of REY in bulk pelagic sediment, however, research on clay-sized fraction of REY-rich sediment has not been fully understood yet. In this study, we aimed to investigate the host phase and migration mechanism of REY in clay-sized fractions from two cores, GC23 and GC17, located on the western and eastern sides of the East Pacific Rise (EPR), respectively. To the best of our knowledge, this is the first comprehensive investigation of the clay-sized fraction of REY-rich sediment associated with hydrothermal activity. Results show that GC23 contains negligible clay minerals but well-crystallized Fe oxyhydroxides, while GC17 is rich in smectite and poor-crystallized Fe oxyhydroxides. REY are predominantly hosted in poorly crystallized Fe-Mn oxyhydroxides, with some phosphorus selectively scavenged by Fe oxyhydroxides from seawater. In addition, fluorapatite nanocrystals were first observed within the matrix of Fe oxyhydroxides using transmission electron microscopy (TEM), indicating the formation of fluorapatite. The post-Archean average shale (PAAS)-normalized REY patterns show similar seawater-like patterns in both the clay-sized and silt-sized fraction. The clay-sized fractions primarily derived from hydrothermal plumes plays an important role in scavenging REY from ambient seawater. This study represents a significant step towards understanding the formation of REY-rich sediment related to hydrothermal activity. A two-stage mineralization process is proposed for the formation of REY-rich sediment near the EPR fields. Firstly, REY are initially scavenged by hydrothermal Fe-Mn oxyhydroxide particles from seawater during their lateral dispersion with hydrothermal plumes under low sedimentation rate until they are buried by newly formed precipitates. With the process of early diagenesis, poor crystallized Fe oxyhydroxides will be experienced recrystallization. Subsequently, REY would be released into porewater with the process of recrystallization due to their tendency to remain in a poorly crystallized phase. Ultimately, they are captured by biogenic apatite and/or fluorapatite. The case study indicates that REY-rich sediments may primarily formed within the dispersion area of hydrothermal plumes. Simultaneously, the necessity of slow sedimentation rates, greater water depth, and deep currents all accountable for the formation of REY-rich layers.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of metasomatism in formation of the Yichun rare-metal deposit, China 变质作用在中国伊春稀有金属矿床形成过程中的作用
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-20 DOI: 10.1016/j.oregeorev.2024.106297
{"title":"Role of metasomatism in formation of the Yichun rare-metal deposit, China","authors":"","doi":"10.1016/j.oregeorev.2024.106297","DOIUrl":"10.1016/j.oregeorev.2024.106297","url":null,"abstract":"<div><div>What role post-magmatic processes have played in the development and mineralization of rare-metal peraluminous granites and how important that role can be, are questions that researchers have been wrestling with for decades. The Yichun Li-Ta-Nb deposit is an example that has been the subject of such a debate. The granitic appearance of rocks, the inert nature of tantalum, and the scarcity of mineralization in country rocks have been taken to suggest that fluid overprints were limited to within the granites and were unimportant in rock- and ore-forming processes. In this study, the identification of two types of abundant Li- and Cs-rich pseudomorphs in both the topaz-lepidolite granite and overlying pegmatite, the only two mineralized units at Yichun, suggests that extensive metasomatism was involved in rock and ore formation. The textural and chemical similarities of lepidolite in comparable mineral assemblages from a variety of occurrences, including lepidolite in pseudomorphs, veins, and miarolitic cavities from both the topaz-lepidolite granite and pegmatite, suggest that all lepidolite at Yichun is metasomatic and largely inherited its chemical signatures from a magmatic-hydrothermal transitional fluid, rich in Li, Cs, and Ta, derived possibly from the Li-muscovite granite that lies beneath the topaz-lepidolite granite. We propose that this transitional liquid, composition of which lies between a silicate melt and aqueous fluid, was not in equilibrium with the original igneous mineralogy, thus bringing about significant metasomatism along its infiltration and evolution upwards. Variations in the trace-element composition of lepidolite likely reflect the influence on mineral compositions by precursor minerals. The ambiguous boundary between the topaz-lepidolite and Li-muscovite granites, combined with the intensely metasomatized nature of the former, is most consistent with the topaz-lepidolite granite being the extensively altered upper portion of the Li-muscovite granite, which is itself somewhat metasomatized. Although magmatic fractionation played a key role in the initial concentration of Nb, Li, and Ta in both granite and pegmatite formation, the Li-Ta-Nb-Cs mineralization and its host rocks were largely formed through magmatic-hydrothermal rejuvenation and re-enrichment.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cobalt and nickel enrichment in base metal sulfides from the Xiarihamu Cu-Ni-Co deposit, China: Constrained by in-situ mineral geochemistry of sulfides 中国霞里哈木铜镍钴矿床基本金属硫化物中钴和镍的富集:受硫化物原位矿物地球化学的制约
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-20 DOI: 10.1016/j.oregeorev.2024.106300
{"title":"The cobalt and nickel enrichment in base metal sulfides from the Xiarihamu Cu-Ni-Co deposit, China: Constrained by in-situ mineral geochemistry of sulfides","authors":"","doi":"10.1016/j.oregeorev.2024.106300","DOIUrl":"10.1016/j.oregeorev.2024.106300","url":null,"abstract":"<div><div>Rapidly growing demand for cobalt and nickel in rechargeable battery industry promotes research on metallogenic theory of magmatic Cu-Ni-Co sulfide deposits. Xiarihamu Cu-Ni-Co deposit, one of the lately discovered Co-rich magmatic sulfide deposits in China, is typical of distribution in orogenic belts, rather than in divergent tectonic settings as many deposits of the same type. <em>In-situ</em> elemental and sulfur isotopic analyses of base metal sulfides (BMS; pyrrhotite, pentlandite, and chalcopyrite) from Xiarihamu were conducted in this study. The strongly negative correlation between Fe and Co + Ni reveals the major occurrence of Co and Ni as isomorphism states in pentlandite and pyrrhotite. The δ<sup>34</sup>S values of pentlandite and pyrrhotite generally increase with Co contents and Co/Ni ratios, indicating that the Co enrichment within BMS accompanied with enhanced contamination of crustal sulfur. Zinc, Cd, Sb, and Te are significantly and preferentially fractionated into intermediate sulfide solution (ISS) from which chalcopyrite exsolved. The Se contents and Se/S ratios of pentlandite and pyrrhotite in lherzolite/harzburgite are much higher than those of BMS from gabbro, which has systematically higher δ<sup>34</sup>S values. Combined with the partially overlapped Sb/Se and As/Se ratios of BMS from lherzolite and gabbro, as well as similar calculated R factors of ore-hosting peridotite and gabbro, it is proposed that the studied Xiarihamu gabbro was crystallized from a separate pulse of Co-Ni-enriched, Se-depleted and intensively contaminated mafic parent magma, rather than evolved from ultramafic magma through crystallization fractionation. The lack of olivine and spinel in gabbro also promoted more Co and Ni into sulfide liquid. Based on Se/Te ratios, the pentlandite and pyrrhotite from drill core XH1E01S was originated from sulfide liquid, which suffered higher degree of crystallization fractionation of monosulfide solution (MSS). While pentlandite and pyrrhotite that crystallized from less evolved parent sulfide liquid bear less cobalt, such as those collected from drill core XH1109. This study strengthens the potential importance of crustal contamination and crystallization fractionation of MSS from sulfide liquid during Co enrichment within BMS (pentlandite and pyrrhotite).</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal rutile chemistry and U-Pb age fingerprinting of the formation of the giant Nurkazgan porphyry Cu-Au deposit, Central Kazakhstan 哈萨克斯坦中部 Nurkazgan 巨大斑岩型铜金矿床形成过程中的热液金红石化学和 U-Pb 年龄指纹图谱
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-19 DOI: 10.1016/j.oregeorev.2024.106293
{"title":"Hydrothermal rutile chemistry and U-Pb age fingerprinting of the formation of the giant Nurkazgan porphyry Cu-Au deposit, Central Kazakhstan","authors":"","doi":"10.1016/j.oregeorev.2024.106293","DOIUrl":"10.1016/j.oregeorev.2024.106293","url":null,"abstract":"<div><div>The porphyry Cu-related intrusions commonly comprise multiple phases such as the large Nurkazgan porphyry Cu-Au deposit in Central Kazakhstan, hosted in the Karagandinsky dioritic to granitic intrusive complex. Here, SHRIMP and LA-ICP-MS zircon U-Pb dating on the multiple ore-bearing intrusions from this complex confirms a punctuated magmatic history distributed over 35 m.y., and marked by three episodic porphyry events rather than a single event, with the oldest event being the early granodiorite and quartz diorite porphyries at ca. 437–440 Ma, the second being the quartz diorite porphyry at 429.7 ± 2.1 Ma, and the last being the late granodiorite and quartz diorite porphyries at 402.8 ± 3.7 Ma and 402.0 ± 3.9 Ma, respectively. The mineralization is related to the two younger episodic intrusions of quartz diorite porphyry at ∼ 430 Ma and ∼ 402 Ma, respectively. SIMS U-Pb dating of hydrothermal, Cu-rich (up to 20.9 ppm) rutile from the breccia-type ores directly constrains the timing of porphyry mineralization at 428.9 ± 6.9 Ma, which is coincident with the emplacement age of the ∼ 430 Ma quartz diorite porphyry, and thus demonstrates this porphyry as a causative intrusion generating main-stage mineralization. This close genetic link is also supported by the chondrite-normalized REE patterns of rutile, which show remarkably similar light REE-enrichments and moderate negative Eu anomalies to those of the ∼ 430 Ma quartz diorite porphyry. A molybdenite sample obtained from the main-ore stage vein, however, has a Re-Os age of 418.6 ± 1.8 Ma, which is slightly younger than the U-Pb age determinations of rutile. This indicates that the Re-Os isotope system was disturbed by the second (post-ore) thermal event related to ∼ 402 Ma quartz diorite porphyry. In line with published data, this study suggests that the rutile U-Pb age in combination with its REE patterns can be a powerful tool to trace the causative porphyry. Moreover, the typical LREE-enriched REE patterns coupled with the high Cu anomalies, inherited from the causative porphyry and related exsolving fluids, can be as diagnostic proxies for distinguishing the porphyry Cu-related hydrothermal rutile from those formed in orogenic gold deposits. Based on these two geochemical discriminators and U-Pb ages, rutile can serve as unique fingerprints to help improve porphyry copper exploration in green field or covered terranes to complement detrital zircon fertility indicators.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrimination of two diverse fluid evolutions from the Nanyangtian scheelite deposit, southeastern Yunnan: Evidences from fluid inclusions and mineral geochemistry 云南东南部南阳田白钨矿床两种不同流体演化的鉴别:流体包裹体和矿物地球化学证据
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-18 DOI: 10.1016/j.oregeorev.2024.106291
{"title":"Discrimination of two diverse fluid evolutions from the Nanyangtian scheelite deposit, southeastern Yunnan: Evidences from fluid inclusions and mineral geochemistry","authors":"","doi":"10.1016/j.oregeorev.2024.106291","DOIUrl":"10.1016/j.oregeorev.2024.106291","url":null,"abstract":"<div><div>The Nanyangtian scheelite deposit is located in the Nanwenhe-Song Chay dome (NSCD), southeastern Yunnan. This deposit has undergone four metallogenic stages and is characterized by several kilometers of bedded scheelite-bearing skarn (NYT-II stage), feldspar-bearing quartz veins (NYT-III stage), and sulfides (NYT-IV stage) in the Neoproterozoic schist and gneiss, all of which exhibit similar fold deformations. Throughout the stages, T<sub>h</sub> and salinity of fluids gradually decrease, weakly and positively correlating, representing a slow cooling process. NYT-I fluids (F-, H<sub>2</sub>O-rich and high T, <em>p</em>), as indicated by the plagioclase within feldspar-bearing quartz veins, may have directly evolved from a highly fractional residual melt or a salt-rich aqueous melt, signifying the magmatic-hydrothermal transition. From NYT-II to NYT-III fluids, a wider variation of δ<sup>18</sup>O<sub>H2O</sub> (−2.4 ∼ 5.1 ‰) to a narrow range of δ<sup>18</sup>O<sub>H2O</sub> (2.8 ∼ 5.1 ‰), and a narrow δ<sup>34</sup>S range (5.18 ‰ ∼ 8.62 ‰) also indicates that fluids may evolve from the relatively oxidized granitic magma. Furthermore, NYT-I fluids could extend throughout the entire fluid evolution, culminating in two diverse paths: one is a much purer magmatic water towards the NYT-III and NYT-IV fluids, and the other is a more meteoric water-dominated towards the NYT-II fluids. A lower water/rock ratio (W/R) existed in the NYT-II stage, leading to the formation of moderately oxidized Tungsten (W)-skarns and scheelites through the NYT-I salt-rich aqueous melts or their reactions with wall rocks in a stable environment. W/R ratios increased in the NYT-III stage, resulting in the formation of NYT-III feldspar-bearing quartz veins with CO<sub>2</sub> generation and alkalinity enhancement. As oxidation diminished, fluids gradually evolved into the NYT-IV fluids, forming sulfides.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New approach to constraining Cr-mineralization and forearc processes: U-Pb dating and geochemistry of titanites in chromitites of the Dun Mountain ophiolite belt (New Zealand) 制约铬矿化和弧前过程的新方法:邓山蛇绿岩带(新西兰)铬铁矿中榍石的 U-Pb 测定和地球化学研究
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-18 DOI: 10.1016/j.oregeorev.2024.106292
{"title":"New approach to constraining Cr-mineralization and forearc processes: U-Pb dating and geochemistry of titanites in chromitites of the Dun Mountain ophiolite belt (New Zealand)","authors":"","doi":"10.1016/j.oregeorev.2024.106292","DOIUrl":"10.1016/j.oregeorev.2024.106292","url":null,"abstract":"<div><div>Ophiolites provide important insights for understanding of subduction zones and forearc mantle-wedge geodynamics. Specifically, within the mantle section, podiform chromitites may record processes associated with development of highly depleted supra-subduction ophiolites, chromium mineralization and subsequent metasomatism. This study explores the first ever U-Pb isotope and trace-element data obtained from titanites in chromitites of the Dun Mountain ophiolite belt in New Zealand. Titanite is unusual in such geochemically depleted rocks and a low recovery rate attests to its rarity (ca. 190 grains from 100 kg of material from two chromitite samples). Results of U-Pb geochronology and geochemistry for the titanites constrain both the mid-Permian timing of chromitite crystallization (∼283 Ma) and later metasomatism (∼272 Ma). Older titanite grains are depleted in HFSE and have flat REE chondrite-normalized patterns reflecting a high-degree of partial melting in depths greater than the plagioclase stability field (&gt;15 km). Younger titanites show enrichment in HFSE, depletion in LREE and negative Eu anomalies, revealing melt extraction at shallower depths (&lt;15 km) that likely record refertilization of the mantle-wedge. Results highlight the potential of titanites in the acquisition of direct geochronological and geochemical constraints from rocks commonly devoid of minerals suitable for U-Pb dating.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluid inclusion and pyrite geochemistry of the Jiapigou gold deposit, North China Craton: Implication for origin of orogenic gold deposit? 华北克拉通嘉皮沟金矿床的流体包裹体和黄铁矿地球化学:对造山运动金矿床起源的影响?
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-10-16 DOI: 10.1016/j.oregeorev.2024.106281
{"title":"Fluid inclusion and pyrite geochemistry of the Jiapigou gold deposit, North China Craton: Implication for origin of orogenic gold deposit?","authors":"","doi":"10.1016/j.oregeorev.2024.106281","DOIUrl":"10.1016/j.oregeorev.2024.106281","url":null,"abstract":"<div><div>The Jiapigou auriferous belt in Jilin province has been recognized as substantial gold-producers in the North China Craton (NCC). Gold mineralization in this district mainly occurs in mineralized quartz veins and alteration zones, characterized by silicification, pyritization, and argillitization. The quartz veins contain three generations of mineralized quartz, namely, qtz1 (probably oldest), qtz2 (slightly younger), and qtz3 (probably youngest) were identified using SEM-CL. The fluid inclusions in all three generations of quartz are broadly of three types, viz., bi-phase Ia (H<sub>2</sub>O-CO<sub>2</sub>), tri-phase Ib (H<sub>2</sub>O-CO<sub>2</sub>-NaCl ± CH<sub>4</sub>), and II (H<sub>2</sub>O-NaCl).The micro-thermometric analysis of the type Ia and Ib fluid inclusion in qtz1 &amp; qtz2 have aqueous-carbonic composition and exhibit a similar salinity of 1.1 to 7.8 wt% NaCl equivalent, whereas the homogenization temperature (Th) range varies from ∼237 to ∼350 °C. These ore-related fluid inclusions are of low to moderate salinity, and show mixture of CO<sub>2</sub> and CH<sub>4</sub>. On the other hand, Type II fluid inclusions are dominant in qtz3. They have salinity of 3.2 to 12.7 wt% NaCl equivalent and homogenization temperature varying between 180 °C and 210 °C. These data indicate that the ore-forming fluid evolved from a CO<sub>2</sub>–H<sub>2</sub>O–NaCl ± CH<sub>4</sub> system during the mineralization period.</div><div>The X-ray elemental maps of pyrite acquired using electron microprobe analysis (EPMA) show irregular zones of Co and Ni indicating two generations of pyrite. The early-stage pyrite which occupies core portion shows high Co and Ni, whereas the later-stage pyrite occupying rim has lower Co and Ni. The laser ablation-inductively coupled plasma-mass spectrometer (LA-ICPMS) analyses of pyrite has indicated that pyrite-1 is rich in Au + Ag + Se + Cu + Co + Ni, whereas, pyrite-2 has lower concentration of these elements. A positive correlation between Fe and other chalcophile elements reported here (i.e. Au + Ag + Se + Cu + Co + Ni), might be due to fluid-rock interaction resulting into a saturated fluid that subsequently precipitated along the microfractures within earlier-formed pyrite and quartz. The in-situ δ<sup>34</sup>S values in pyrite from Jiapigou deposits overlap in the range of +4.5 to +9.6 ‰, which is consistent with the ore-forming fluids of the crustal origin input during fluid-rock interaction. The systematic pyrite compositional observations and fluid inclusions study documented here to provide new insight into the process of ore formation for the Au enrichment in the Jiapigou deposit.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信