Ore Geology Reviews最新文献

筛选
英文 中文
Genesis of the Mamuniyeh copper deposit in the central Urumieh-Dokhtar Magmatic Arc, Iran: Constraints from geology, geochemistry, fluid inclusions, and H–O–S isotopes 伊朗乌鲁米耶-多赫塔尔岩浆弧中部 Mamuniyeh 铜矿床的成因:来自地质学、地球化学、流体包裹体和 H-O-S 同位素的制约因素
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-02 DOI: 10.1016/j.oregeorev.2024.106279
Mohammad Goudarzi , Hassan Zamanian , Urs Kloetzli , David Lentz , Matee Ullah
{"title":"Genesis of the Mamuniyeh copper deposit in the central Urumieh-Dokhtar Magmatic Arc, Iran: Constraints from geology, geochemistry, fluid inclusions, and H–O–S isotopes","authors":"Mohammad Goudarzi , Hassan Zamanian , Urs Kloetzli , David Lentz , Matee Ullah","doi":"10.1016/j.oregeorev.2024.106279","DOIUrl":"10.1016/j.oregeorev.2024.106279","url":null,"abstract":"<div><div>The Mamuniyeh Cu deposit is located in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA), 10 km south of the city of Mamuniyeh, Iran. Mineralization is controlled by faults with a NW-SE trend and hosted within an Eocene volcanic sequence and Oligo-Miocene hypabyssal calc-alkaline monzonitic and gabbroic bodies. Quartz + chalcopyrite veins are most abundant and high-grade ore containing up to 5 wt% Cu, although quartz + pyrite veins have the most abundant sulphide content. In addition, quartz + chalcopyrite + specular hematite ± pyrite veins/veinlets are another common mineralized assemblage in the Mamuniyeh copper deposit, with pyrite, chalcopyrite, bornite, and oxide minerals (specular hematite, titanomagnetite, and magnetite) typical of the hypogene stage. Chalcocite, covellite, and dignite also formed at the margins of primary sulphides in the supergene (paleoweathering) stage. The mineralized veins exhibit colloform, crustiform, open space-fillings, replacements, and dissemination textural characteristics associated with mineralizing assemblages with silicification, argillization, chloritization, and sericitization assemblages. The salinity for L > V fluid inclusions is between 1.74 to 11.7 wt% NaCl and for (V > L) inclusions between 1.7 to 11.4 wt% NaCl. The average homogenization temperature and salinity for quartz + chalcopyrite + pyrite veins is 186 °C and 4.9 wt% NaCl. In the quartz + chalcopyrite assemblage an average of 185 °C and 4.5 wt% NaCl and for quartz + chalcopyrite + specularite ± pyrite (QCSP) an average of 195 °C and 5.59 wt% NaCl was determined. In these three vein types, the fluid density has almost identical values ranging from 0.8 to 1.0 g/cm<sup>3</sup>. The mineralizing system evolved in two-stages; the first metal precipitation occurred at less than 1 km of crustal depths and second metal deposition stage at shallower crustal levels (less than 500 m). Although it appears that the boiling process occurred within the fluids of the area, the primary factor contributing to Cu mineralization was influenced by fluidmixing processes. The δ<sup>18</sup>O and δD values of ore fluids computed vary from + 6.08 to −0.50 ‰ and −92 to −71 ‰, respectively, indicative of the blending of oxidizing and cooler meteoric waters with primary magmatic fluids. Calculated values of δ<sup>34</sup>S of H<sub>2</sub>S in equilibrium with chalcopyrite ranges from −7.6 to −1.9 ‰ and H<sub>2</sub>S in equilibrium with pyrite ranges from −7.1 to −3.8 ‰, respectively; this is consistent with monzodiorite to gabbro as the magmatic sulphur source for copper mineralizing fluids. Furthermore, the QCSP vein data align more closely with primary magmatic water compared to other veins, suggesting that precipitation occurred mainly from magmatic fluids, which experienced depletion in δ<sup>18</sup>O due to mixing with meteoric waters (shallow oxygenated ground waters), which caused sulphide deposition. The geochemical features for the","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"175 ","pages":"Article 106279"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Processes controlling magma fertility at Buenavista del Cobre porphyry copper deposit (Cananea, México): A new petrogenetic model based on zircon U-Pb dating and apatite geochemistry 控制 Buenavista del Cobre 斑岩铜矿床(墨西哥卡纳尼亚)岩浆肥度的过程:基于锆石 U-Pb 定年和磷灰石地球化学的新岩石成因模型
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-02 DOI: 10.1016/j.oregeorev.2024.106320
Víctor Almada-Gutiérrez , Mélanie Noury , Thierry Calmus , Nathan Cogné , Edgardo Barrera-Moreno , Marc Poujol
{"title":"Processes controlling magma fertility at Buenavista del Cobre porphyry copper deposit (Cananea, México): A new petrogenetic model based on zircon U-Pb dating and apatite geochemistry","authors":"Víctor Almada-Gutiérrez ,&nbsp;Mélanie Noury ,&nbsp;Thierry Calmus ,&nbsp;Nathan Cogné ,&nbsp;Edgardo Barrera-Moreno ,&nbsp;Marc Poujol","doi":"10.1016/j.oregeorev.2024.106320","DOIUrl":"10.1016/j.oregeorev.2024.106320","url":null,"abstract":"<div><div>The Buenavista del Cobre is a world-class porphyry Cu-Mo deposit located in the Cananea Mining District, northern Sonora, México. Using zircon U-Pb dating, we show that the Proterozoic Cananea Granite, unconformably overlain regionally by Paleozoic limestones hosting skarn deposits underlies the present-day pit. We also present new crystallization ages for host rocks of copper mineralization in the District, dating for the first time a volcanic rock of the Henrietta Formation at 186.8 ± 1.1/3.0 Ma and the El Torre Syenite at 176.3 ± 1.1/2.9 Ma. Zircon U-Pb dating of the different porphyritic bodies reveals that the magmatic activity at Buenavista del Cobre lasted at least 4 Myr, from 59.7 ± 0.5/1.1 Ma to 56.1 ± 0.2/0.9 Ma. The deposit is composed by several porphyry intrusions referred to as “ore-rich” and “ore-poor” based on their individual metal contributions, which provides the opportunity to study the origin and processes enhancing magma fertility in an individual deposit. Combining our new geochronological dataset with geochemistry of apatite from the different porphyries allows us to propose a new petrogenetic model for the Buenavista del Cobre deposit. As the apatite Eu and Ce anomalies overlap with no clear difference between the ore-rich and ore-poor intrusions, we propose that the magmatic oxidation states of the magmas were similar. However, differences in apatite REE signatures, as well as variations in apatite Sr compositions between the two groups suggest that fractional crystallization processes in the parental magma influence the fertility of the porphyries. Additionally, apatite Cl contents of ore-rich porphyry intrusions are higher (&gt;0.4 wt%) than the ore-poor intrusions (&lt;0.2 wt%), suggesting an important role of the initial Cl content of the magmas in the mineralization process. These observations give new insights on the petrogenetic processes at origin of porphyry magma fertility. We propose that the evolution of the parental melt by fractional crystallization of hydrous minerals (hornblende) at upper crustal levels induced low H<sub>2</sub>O content of the residual magma, resulting in the formation of ore-poor porphyries. In contrast, we suggest that fractionation of anhydrous minerals (plagioclase) increased the H<sub>2</sub>O content in the residual melt, leading to the formation of ore-rich porphyries. Our new data allow us to propose an original genetic model for the Buenavista del Cobre deposit, which involves two cycles of supply, cooling and partial crystallization. This contribution shows that petrogenetic processes controlling porphyry copper magmas fertility are recorded in the composition of apatite at the deposit scale and highlights the importance of considering apatite geochemistry as an exploration tool.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"175 ","pages":"Article 106320"},"PeriodicalIF":3.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-stage REE mineralization in the Bayan Obo Fe-REE-Nb deposit: Constraints from biotite and apatite geochemistry 巴彦奥博 Fe-REE-Nb 矿床的多级 REE 矿化:生物岩和磷灰石地球化学的制约因素
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106312
Pei Liang , Junyi Wang , Bicheng Li , Yuling Xie , Jinsheng Han , Jiaming Xia , Bingbing Li , Li Chen
{"title":"Multi-stage REE mineralization in the Bayan Obo Fe-REE-Nb deposit: Constraints from biotite and apatite geochemistry","authors":"Pei Liang ,&nbsp;Junyi Wang ,&nbsp;Bicheng Li ,&nbsp;Yuling Xie ,&nbsp;Jinsheng Han ,&nbsp;Jiaming Xia ,&nbsp;Bingbing Li ,&nbsp;Li Chen","doi":"10.1016/j.oregeorev.2024.106312","DOIUrl":"10.1016/j.oregeorev.2024.106312","url":null,"abstract":"<div><div>This new discovery of the silicate-calcite complex pluton for the Bayan Obo Formation in the giant Bayan Obo deposit, North China craton, with varied petrographic characteristics of biotite-, calcite-biotite-, calcite- and carbonatite units, from outer to inner, provides a new direction for us to explore the enrichment mechanism of REE mineralization in carbonatite and subsequent post-carbonatite hydrothermal fluid. As the sensibility to chemical and physical factors associated with magmatic crystallization fractionation and fluid activities, biotite and apatite from the Bayan Obo deposit were taken detailed petrographic, geochronologic and geochemical compositional study. Two groups of biotite and apatite have been divided, including primary magma-related ones with age of 1231 Ma, which is characterized by relatively high K/Rb ratios and temperature; and altered hydrothermal ones with ages of 280 to 240 Ma, which is characterized by relatively high X<sub>Mg</sub>, Al<sup>IV</sup>, F, REE contents, high oxygen fugacity, and low temperature. Significantly discrepant geochemical characteristics of types of biotite and apatite indicate disparate REE mineralization in magmatic and hydrothermal processes. For the magmatic process, the crystallization of REE-poor minerals during the evolution of silicate-carbonatite complex results in the enrichment of REE and the differentiation between HREE and LREE in the residual carbonatite magma. For the hydrothermal process, the highest REE contents in altered hydrothermal biotites and apatites formed by REE/F-rich late hydrothermal fluids, which was supposed to source from the Hercynian magmatic activities. In addition, the high contents of F in late hydrothermal biotites and apatites are assumed to be important for the enrichment and precipitate of REE minerals.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106312"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights on the petrogenesis of the Koktokay No.3 pegmatitic dyke: Petrological and zirconological evidence from the Aral granitic complex (Xinjiang, China) 关于可可托海 3 号伟晶岩岩体的岩石成因的新见解:来自阿拉尔花岗岩群(中国新疆)的岩石学和锆石学证据
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106309
Xiang Wang
{"title":"New insights on the petrogenesis of the Koktokay No.3 pegmatitic dyke: Petrological and zirconological evidence from the Aral granitic complex (Xinjiang, China)","authors":"Xiang Wang","doi":"10.1016/j.oregeorev.2024.106309","DOIUrl":"10.1016/j.oregeorev.2024.106309","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The Koktokay No.3 pegmatite dyke (KPD), containing numerous Li–Be–Nb–Ta–Cs mineral resources, is among the world’s most famous rare-metal deposits, and attracted much attention. Up to now, over thirty geochronological data have been reported ranging from 332 Ma to 120 Ma for the KPD, which causes uncertainty about the origin and petrogenesis of the pegmatite. In this contribution, whole-rock geochemistry and zircon geochronology have been conducted on the Aral biotite monzogranite (BMG), the Koktokay muscovite alkali-feldspar granite (MAG), and the KPD. Petrological and whole-rock geochemistry results reveal that the BMG is normal granite with medium SiO&lt;sub&gt;2&lt;/sub&gt; (mean of 67.23 %), enriched in compatible trace elements such as Ba, Sr and Zr, and slight negative Eu anomalies, while the MAG belongs to highly-fractionated granite with high SiO&lt;sub&gt;2&lt;/sub&gt; (mean of 73.92 %) and extensive negative Eu anomalies, and enriched in incompatible trace elements such as Rb, Ta, and U. Zircon morphology and LA–ICPMS analysis reveal that magmatic zircons from the BMG, hydrothermal zircons from the MAG and KPD yield lower intercept ages at 217.3 ± 2.4 Ma, 197.8 ± 4.7 Ma, and 195.4 ± 2.0 Ma, respectively. Combining with tectonic information and geochronological data of granitic activity and its mineralization in the Altay, this study explains the petrogenetic mechanism of the KPD after &lt;span&gt;&lt;span&gt;Wang et al. (2021)&lt;/span&gt;&lt;/span&gt;‘s metallogenic model: (1) In late stage of Middle Triassic, the collision between the Siberian plate and the Kazakhstan–Junggar plate caused a large number of thrust nappe faults and crust thickening in the Altay orogenic belt; At ∼217 Ma, the compression reached its peak, the crustal anatexis produced &lt;em&gt;syn&lt;/em&gt;-collisional BMG (i.e., the Aral BMG); After the compressive peak, huge amount of granitic magma in deep-seated magma chamber underwent over 20 Myr of fractional crystallization, and the residual magma enriched in ore-forming materials (rare metal elements, volatile components, and aqueous fluids) occurred at the top of the magma chamber; (2) When the regional stress converted from compression to extension, the highly-fractionated residual magma ascended rapidly from the long-lived magma chamber along extensional faults at ∼195 Ma; The huge amount of melt-bearing fluids were exsolved from the residual magma in the course of its emplacement due to sharply decreasing pressure, and intruded into a large cavity generated by extensional fault; Along with slowly decreasing temperature, the melt-enriched fluids crystallized outside-in as (quasi-) concentric pegmatitic zones (i.e., KPD); (3) The residual magma which lost huge amount of fluid filled the lower space of the extensional system, and crystallized as post-collisional MAG (i.e., the Koktokay MAG). Based on the genetic relationship among tectonics, petrogenesis, and metallogeny, the proposed model shows material and energetic conversion processes from &lt;em&gt;syn&lt;/em&gt;-","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106309"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence and enrichment of critical metals in ferromanganese deposits in the western Pacific 西太平洋锰铁矿床中关键金属的出现和富集
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106314
Xianze Deng, Jiangbo Ren, Xiguang Deng, Jun Tu, Shuang Hong, Gaowen He, Limin Zhang, Yong Yang
{"title":"Occurrence and enrichment of critical metals in ferromanganese deposits in the western Pacific","authors":"Xianze Deng,&nbsp;Jiangbo Ren,&nbsp;Xiguang Deng,&nbsp;Jun Tu,&nbsp;Shuang Hong,&nbsp;Gaowen He,&nbsp;Limin Zhang,&nbsp;Yong Yang","doi":"10.1016/j.oregeorev.2024.106314","DOIUrl":"10.1016/j.oregeorev.2024.106314","url":null,"abstract":"<div><div>Co-rich ferromanganese nodules and crusts are economically valuable deep-sea ferromanganese deposits widely distributed in the western Pacific Ocean and are rich in critical metals such as Co, Ni, Cu and rare earth elements (REEs). However, the lack of fine delineation and systematic comparisons of the distributions of these critical metals in these ferromanganese deposits limits the understanding of the occurrence states of Co, Ni, Cu and REEs and the metallogenesis of ferromanganese deposits. Therefore, the authors selected one nodule and one crust from the western Pacific Ocean, and utilized high-resolution methods such as micro-area X-ray fluorescence spectrometry (μ-XRF), laser-ablation inductively-coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS), and laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) to depict elemental distribution and elemental profile.</div><div>The results show that the ferromanganese deposits are predominantly composed of Fe-vernadite with low Mn/Fe ratios. Co, Ni and Cu exist primarily in the manganate octahedral layer of Fe-vernadite. REEs mostly exist in feroxyhite of Fe-vernadite, and manganate octahedral layer of Fe-vernadite also have high Ce content. Co, Ni and Cu contents of ferromanganese deposits are closely correlated with Mn/Fe ratios: Co, Ni and Cu contents increase with Mn/Fe ratios until the Mn/Fe ratios rises up to 4, and remain stable when Mn/Fe ratios &gt; 6. The enrichment of Co, Ni and Cu in ferromanganese deposits is controlled by the redox conditions of seawater during accretion, whereas REEs enrichment is related to Mn and Fe fluxes in seawater during accretion. The coupling relationships between elemental distributions help to reveal the elemental occurrence state, and the geochemistry of ferromanganese deposits are analyzed to identify element enrichment mechanism.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106314"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addressing imbalanced data for machine learning based mineral prospectivity mapping 为基于机器学习的矿产远景测绘解决不平衡数据问题
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106270
Fahimeh Farahnakian , Javad Sheikh , Luca Zelioli , Dipak Nidhi , Iiro Seppä , Rami Ilo , Paavo Nevalainen , Jukka Heikkonen
{"title":"Addressing imbalanced data for machine learning based mineral prospectivity mapping","authors":"Fahimeh Farahnakian ,&nbsp;Javad Sheikh ,&nbsp;Luca Zelioli ,&nbsp;Dipak Nidhi ,&nbsp;Iiro Seppä ,&nbsp;Rami Ilo ,&nbsp;Paavo Nevalainen ,&nbsp;Jukka Heikkonen","doi":"10.1016/j.oregeorev.2024.106270","DOIUrl":"10.1016/j.oregeorev.2024.106270","url":null,"abstract":"<div><div>Effective Mineral Prospectivity Mapping (MPM) relies on the ability of Machine Learning (ML) models to extract meaningful patterns from geophysical data. However, in mineral exploration, identifying the presence of mineral deposits is often a rare event compared with the overall geological landscape. This rarity leads to a highly imbalanced dataset, where positive instances (mineralized samples) are considerably less frequent than negative instances (non-mineralized samples). Imbalanced data can potentially bias ML models towards the majority class, leading to inaccurate predictions for the minority class (mineralized samples) which are of primary interest. To address this challenge, we proposed two-level methods in this study. At the data level, we employed imbalanced data handling techniques that operate on the training dataset and change the class distribution. At the algorithmic level, we adjusted the decision threshold of a model to balance the trade-off between false positives and false negatives. Experimental results are collected on a geophysical data from Lapland, Finland. The dataset exhibits a significant class imbalance, comprising 17 positive samples contrasted with <span><math><mrow><mn>1</mn><mo>.</mo><mn>84</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> negative samples. We investigate the effect of handling imbalanced data on the performance of four ML models including Multi-Layer Perceptron (MLP), Random Forest (RF), Decision Tree (DT), and Logistic Regression (LR). From the results, we found that the MLP model achieved the best overall performance, with total accuracy of 97.13% on balanced data using synthetic minority oversampling method. Random forest and DT also performed well, with accuracies of 88.34% and 89.35%, respectively. The implemented methodology of this work is integrated in QGIS as a new toolkit which is called EIS Toolkit <span><span><sup>1</sup></span></span>for MPM.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106270"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous tellurium enrichment associated with gold mineralization: A mineralogical and isotopic study of the Yongxin Te-Au deposit, northeast China 与金矿化有关的异常碲富集:中国东北永新碲金矿床的矿物学和同位素研究
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106296
Mengmeng Zhang , Junfeng Shen , Chenglu Li , M. Santosh , Bo Xu , Masroor Alam , Gexue Zhao , Kexin Xu , Jiajun Liu
{"title":"Anomalous tellurium enrichment associated with gold mineralization: A mineralogical and isotopic study of the Yongxin Te-Au deposit, northeast China","authors":"Mengmeng Zhang ,&nbsp;Junfeng Shen ,&nbsp;Chenglu Li ,&nbsp;M. Santosh ,&nbsp;Bo Xu ,&nbsp;Masroor Alam ,&nbsp;Gexue Zhao ,&nbsp;Kexin Xu ,&nbsp;Jiajun Liu","doi":"10.1016/j.oregeorev.2024.106296","DOIUrl":"10.1016/j.oregeorev.2024.106296","url":null,"abstract":"<div><div>The Yongxin tellurium-gold (Te-Au) deposit, a large epithermal deposit in the Duobaoshan polymetallic metallogenic belt (DPMB) within eastern section of the Central Asian Orogenic Belt (CAOB), is mainly hosted by syenogranite and mylonite. However, the Te-Au occurrence, precipitation mechanism and genesis in this deposit remain elusive. In this study, pyrite, the primary host of Te-Au mineralization, was studied utilizing multiparametric techniques such as scanning electron microscope (SEM), electron probe microanalysis (EPMA), in-situ laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) and femtosecond laser ablation coupled multi-collector inductively coupled plasma mass spectrometry (fs LA-MC-ICP-MS). The results show that there are three generations of pyrite termed here as Py1, Py2 and Py3. The coarse euhedral Py1 and fine vein Py2 contain negligible to low contents of Te and Au, whereas the anhedral aggregated Py3 with porosity and grain boundary (GB) shows the highest concentrations of Te and Au. Representative LA-ICP-MS profiles show that Te-Au occurs either as solid solution in the Py1 and Py2 or submicroscopic Au-Ag-Te-Bi inclusions, electrum and native gold in Py3. Thermodynamic data of telluride and sulfide show that the Te-Au was deposited under relatively oxidizing conditions with values of log <em>f</em> Te<sub>2</sub> ranging from −15.2 to −11.2 and log <em>f</em> S<sub>2</sub> from −16.7 to −12.1. at 200 °C. We infer that fluid mixing and fluid-rock interaction were the dominant mechanisms that triggered the precipitation of Te-Au in the Yongxin Te-Au deposit. Geochemical and geochronological data indicate that the likely source of Te is Te-rich oceanic sediments originating from the Western Pacific Plate. Pyrite and telluride from the gold deposits can be potential targets for Te exploration in the DPMB.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106296"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The formation and recycling of Neoproterozoic granitoids in the Jiangnan Orogen, South China: Implications for Mesozoic rare metal mineralization 华南江南造山带新新生代花岗岩的形成与循环:对中生代稀有金属成矿的影响
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106332
Hongfei Di , Yong-Jun Shao , Yi-Qu Xiong , Matthew J. Brzozowski , Di Wang , Lei Liu , Zhi-Wei Fan , Wenjie Fang
{"title":"The formation and recycling of Neoproterozoic granitoids in the Jiangnan Orogen, South China: Implications for Mesozoic rare metal mineralization","authors":"Hongfei Di ,&nbsp;Yong-Jun Shao ,&nbsp;Yi-Qu Xiong ,&nbsp;Matthew J. Brzozowski ,&nbsp;Di Wang ,&nbsp;Lei Liu ,&nbsp;Zhi-Wei Fan ,&nbsp;Wenjie Fang","doi":"10.1016/j.oregeorev.2024.106332","DOIUrl":"10.1016/j.oregeorev.2024.106332","url":null,"abstract":"<div><div>In the era of energy transition on the Earth, rare metal mineralization has attained increased significance for various energy sectors and understanding their formation and evolution in various tectonic settings is of great importance for formulating exploration strategies. The Neoproterozoic Jiangnan Orogen in South China marks the assembly zone of the Yangtze and Cathaysia blocks and carries numerous rare metal deposits. In this contribution, we investigate the Neoproterozoic Jiuling composite batholith to understand the formation of rare metal mineralization. We present new in-situ zircon U–Pb ages and Lu–Hf isotopes, and whole-rock geochemistry and Sm–Nd isotopes of the Banbei biotite granodiorite and the associated rare metal-mineralized Baishawo granites in the western portion of the Jiuling batholith suite. Zircon U–Pb dating indicates that the Banbei biotite granodiorite, and the Baishawo two-mica granite and muscovite granite formed at ca. 820 Ma, 153 Ma, and 142 Ma, respectively. The ε<sub>Hf</sub>(t) values of the biotite granodiorite, two-mica granite and muscovite granite are –4.4 to +5.8, –11.8 to –7.0, and –10.5 to –7.3, respectively. The ε<sub>Nd</sub>(t) values of the biotite granodiorite, two-mica granite and muscovite granite are –3.88 to –2.73, –10.6 to –10.2, and –9.23 to –9.16, respectively. Zircon Hf isotopes and whole-rock Sm–Nd isotopes suggest that the granite suite was sourced from the Mesoproterozoic crust. Geochemical modeling suggests that the Banbei biotite granodiorite was derived from partial melting of Meso- to Neoproterozoic metasedimentary rocks, whereas the Baishawo two-mica granite and muscovite granite were derived from assimilation–fractional crystallization of the Neoproterozoic Banbei biotite granodiorite and Mesozoic magma with low degrees of differentiation. Combined with previous studies on the granite suites in the Jiangnan Orogen, we suggest that collision between the Yangtze and Cathaysia blocks ceased at least 820 Ma, and that Precambrian rocks might have contributed significantly to the enrichment of rare metal mineralization in Mesozoic granite through reworking.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106332"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralization of Zn-Pb-Ag and associated critical metals: An introduction 锌-铅-银及相关临界金属的成矿作用:导言
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106328
Jia-Xi Zhou , Yi Zheng , Yan-Jun Li , Thomas Ulrich , Ling-Li Zhou
{"title":"Mineralization of Zn-Pb-Ag and associated critical metals: An introduction","authors":"Jia-Xi Zhou ,&nbsp;Yi Zheng ,&nbsp;Yan-Jun Li ,&nbsp;Thomas Ulrich ,&nbsp;Ling-Li Zhou","doi":"10.1016/j.oregeorev.2024.106328","DOIUrl":"10.1016/j.oregeorev.2024.106328","url":null,"abstract":"<div><div>The combination of zinc (Zn), lead (Pb), and/or silver (Ag) is widely developed in various types of deposits. They also form various types of independent deposits and are associated with a variety of critical metals, such as germanium (Ge), cadmium (Cd), gallium (Ga), and thallium (Tl). The Zn-Pb-Ag deposits make an important group of mineral deposits worldwide, including volcanic-hosted massive sulfide (VHMS), magmatic-hydrothermal-associated skarn and/or epithermal, sedimentary rocks-hosted (e.g., Sedimentary Exhalative, SEDEX; carbonate-hosted epigenetic/Mississippi-Valley-type, MVT; Sandstone/shale-hosted epigenetic, SST), and hydrothermal-vein types. This Special Issue aims to provide a comprehensive understanding of Zn-Pb-Ag deposits and associated critical metals in a variety of geological settings, and promote global prospecting. This Special Issue contains 61 papers (including reviews) covering major Zn-Pb-Ag metallogenic provinces/zones worldwide. The publications provide a comprehensive and systematic analysis including ore deposit geology, geochemistry, geochronology, ore-forming dynamics process and background, big data and deep learning, metallogenic prognosis and ore genesis of Zn-Pb-Ag deposits, as well as the occurrence status and enrichment mechanisms of associated critical metals. These achievements will help to establish more practical mineralization and prospecting models. Equally, they promote the understanding of the genesis of Zn-Pb-Ag deposits, develop new mineralization theory for Zn-Pb-Ag deposits, and provide a theoretical basis for the comprehensive utilization of associated critical metals.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106328"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Episodic fluid pulses in the Baiyun gold deposit, Liaodong Peninsula, Eastern China: Insights from in-situ trace elements, sulfur isotopes, and texture characteristics of pyrite 中国东部辽东半岛白云金矿床的偶发性流体脉冲:从原位痕量元素、硫同位素和黄铁矿质地特征得出的启示
IF 3.2 2区 地球科学
Ore Geology Reviews Pub Date : 2024-11-01 DOI: 10.1016/j.oregeorev.2024.106313
Qing-Yi Cui , Jian Li , Wen-Yan Cai , Hong-Jiang Shi , Kai-Lei Xu , Pengfei Liu , Chao Zhang , Ming Lei , Xu-Yan Bian
{"title":"Episodic fluid pulses in the Baiyun gold deposit, Liaodong Peninsula, Eastern China: Insights from in-situ trace elements, sulfur isotopes, and texture characteristics of pyrite","authors":"Qing-Yi Cui ,&nbsp;Jian Li ,&nbsp;Wen-Yan Cai ,&nbsp;Hong-Jiang Shi ,&nbsp;Kai-Lei Xu ,&nbsp;Pengfei Liu ,&nbsp;Chao Zhang ,&nbsp;Ming Lei ,&nbsp;Xu-Yan Bian","doi":"10.1016/j.oregeorev.2024.106313","DOIUrl":"10.1016/j.oregeorev.2024.106313","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The driving mechanism behind the mineralization process remains ambiguous, whether it is propelled by a single fluid evolution or multiple fluid pulses. Minerals have the capacity to precisely document the fluid evolution. Hence, an accurate understanding of mineral formation is essential for a precise interpretation of fluid evolution. The Baiyun gold deposit is located in the Qingchengzi ore field in the Liaodong Peninsula of the North China Craton. The textural characteristics and geochemical composition of pyrite provide evidence for the formation process of the Baiyun gold deposit. Based on mineral assemblages, ore textures, and cross-cutting relationships, the Baiyun gold deposit can be divided into four stages: (I) disseminated/stockworked quartz-pyrite-K-feldspar, (II) quartz-pyrite-chalcopyrite-native gold vein, (III) quartz-pyrite-native gold ± galena ± sphalerite vein, and (IV) ore-barren calcite-quartz veinlets.&lt;/div&gt;&lt;div&gt;Native gold predominantly accumulates in stages II-III, each subdivided into two generations (Py2a, Py2b, Py3a, Py3b), with significant gold precipitation in the later Py2b and Py3b. Notably, Py2a displays high concentrations of As (avg. 412.66 ppm), Au (avg. 2.12 ppm), Ag (avg. 34.65 ppm), Co (avg. 471.88 ppm) and Te (avg. 39.79 ppm), contrasting with lower concentrations in Py2b for As (avg. 100.11 ppm), Au (avg. 0.99 ppm), Ag (avg. 8.33 ppm), Co (avg. 281.28 ppm) and Te (avg. 11.11 ppm). Stage III compares to stage II, with elements like Co (Py3a: avg. 2240.00 ppm; Py3b: avg. 170.15 ppm), Au (Py3a: avg. 0.74 ppm; Py3b: avg. 0.65 ppm), Ag (Py3a: avg. 5.33 ppm; Py3b: avg. 2.50 ppm), and As (Py3a: avg. 1132.91 ppm; Py3b: avg. 245.90 ppm) exhibiting similar trends of change. The δ&lt;sup&gt;34&lt;/sup&gt;S value trend (Py2a → Py2b: avg. 15.7 ‰ → avg. −8.0 ‰; Py3a → Py3b: avg. 11.5 ‰ → avg. −3.4 ‰) aligns with the trace element variations. Thermodynamic simulations, based on mineral compositions and sulfur isotopes, reveal difference fluid natures between Py2a (T = 300 °C; pH = 5.1–6.5; moderate &lt;em&gt;f&lt;/em&gt;O&lt;sub&gt;2&lt;/sub&gt; = −33.1 to −31.1) and Py3a (T = 250 °C; pH = 5.6–6.6; lower &lt;em&gt;f&lt;/em&gt;O&lt;sub&gt;2&lt;/sub&gt; = −39.2 to −36.1). Noteworthy differences exist not only in trace elements and sulfur isotopes between stages II-III but also in the micro-deformation of pyrite. Stage II is marked by plastic deformation (dominated by low-angle boundaries; 2–5°), resulting in a non-significant contribution to gold precipitation. In contrast, stage III exhibits brittle deformation (dominated by high-angle boundaries; &gt;5°), where gold primarily precipitates and enriches. The significant variations in trace elements, sulfur isotopes, fluid natures, and pyrite deformation indicate the occurrence of episodic fluid pulses. Furthermore, sulfur isotopes display both enrichment and depletion characteristics. This phenomenon may be related to sulfate reduction. The Paleoproterozoic strata serve as significant sulfur reservoirs within the region an","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"174 ","pages":"Article 106313"},"PeriodicalIF":3.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信