Dating a sedimentary manganese ore deposit using U-Pb geochronology of hausmannite (Mn3O4) by LA-ICP-MS: An example from Heqing Mn deposit, Yunnan Province, Southwestern China
Wen-Tian Li , Shao-Yong Jiang , Hui-Min Su , Qin Huang , Dao-Hui Pi , Wei Wang , Shugang Xiao
{"title":"Dating a sedimentary manganese ore deposit using U-Pb geochronology of hausmannite (Mn3O4) by LA-ICP-MS: An example from Heqing Mn deposit, Yunnan Province, Southwestern China","authors":"Wen-Tian Li , Shao-Yong Jiang , Hui-Min Su , Qin Huang , Dao-Hui Pi , Wei Wang , Shugang Xiao","doi":"10.1016/j.oregeorev.2025.106711","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately dating sedimentary manganese (Mn) deposits remains challenging due to the scarcity of suitable geochronometers. Mn oxide minerals—which host relatively high uranium (U) and low lead (Pb) concentrations—offer significant potential as a viable geochronometric tool.<!--> <!-->In this study, we report the first accurate direct measurements of in-situ U-Pb ages of hausmannite (Mn<sub>3</sub>O<sub>4</sub>) from the Heqing sedimentary Mn deposit (Yunnan Province, Southwestern China), obtained via laser ablation-inductively coupled mass spectrometry (LA-ICP-MS). The U-Pb age of 229.5 ± 4.5 Ma for U-bearing hausmannite aligns remarkably with the 226 ± 3.4 Ma age of interbedded basalt in the Late Triassic Mn-bearing Songgui Formation, confirming a sedimentary-diagenetic origin for this deposit. This concordance validates Mn oxide U-Pb geochronology as a novel and reliable method for dating sedimentary Mn deposits. Furthermore, these ages provide direct support for the oxic ore genetic model, indicating primary deposition of Mn as oxides in sediments. By enabling direct dating of hausmannite and other Mn oxides, this research fills a critical gap in Mn mineralization chronology. Applied globally to sedimentary Mn deposits across geological time, and leveraging Mn’s redox sensitivity, this method promises new insights into Earth’s exogenic environmental evolution.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"183 ","pages":"Article 106711"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825002719","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately dating sedimentary manganese (Mn) deposits remains challenging due to the scarcity of suitable geochronometers. Mn oxide minerals—which host relatively high uranium (U) and low lead (Pb) concentrations—offer significant potential as a viable geochronometric tool. In this study, we report the first accurate direct measurements of in-situ U-Pb ages of hausmannite (Mn3O4) from the Heqing sedimentary Mn deposit (Yunnan Province, Southwestern China), obtained via laser ablation-inductively coupled mass spectrometry (LA-ICP-MS). The U-Pb age of 229.5 ± 4.5 Ma for U-bearing hausmannite aligns remarkably with the 226 ± 3.4 Ma age of interbedded basalt in the Late Triassic Mn-bearing Songgui Formation, confirming a sedimentary-diagenetic origin for this deposit. This concordance validates Mn oxide U-Pb geochronology as a novel and reliable method for dating sedimentary Mn deposits. Furthermore, these ages provide direct support for the oxic ore genetic model, indicating primary deposition of Mn as oxides in sediments. By enabling direct dating of hausmannite and other Mn oxides, this research fills a critical gap in Mn mineralization chronology. Applied globally to sedimentary Mn deposits across geological time, and leveraging Mn’s redox sensitivity, this method promises new insights into Earth’s exogenic environmental evolution.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.