Organogenesis最新文献

筛选
英文 中文
Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold 通过胆管再细胞化支持脱细胞大鼠肝支架上的功能性同种异体和异种细胞生长
IF 2.3 4区 生物学
Organogenesis Pub Date : 2017-01-02 DOI: 10.1080/15476278.2016.1276146
Wessam S. Hassanein, M. Uluer, John T. Langford, J. Woodall, A. Cimeno, U. Dhru, Avraham Werdesheim, Joshua Harrison, Carlos Rivera-Pratt, Stephen Klepfer, A. Khalifeh, Bryan Buckingham, P. Brazio, D. Parsell, Charlie Klassen, C. Drachenberg, R. Barth, J. LaMattina
{"title":"Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold","authors":"Wessam S. Hassanein, M. Uluer, John T. Langford, J. Woodall, A. Cimeno, U. Dhru, Avraham Werdesheim, Joshua Harrison, Carlos Rivera-Pratt, Stephen Klepfer, A. Khalifeh, Bryan Buckingham, P. Brazio, D. Parsell, Charlie Klassen, C. Drachenberg, R. Barth, J. LaMattina","doi":"10.1080/15476278.2016.1276146","DOIUrl":"https://doi.org/10.1080/15476278.2016.1276146","url":null,"abstract":"ABSTRACT Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"13 1","pages":"16 - 27"},"PeriodicalIF":2.3,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1276146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44922098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Par-1b is required for morphogenesis and differentiation of myoepithelial cells during salivary gland development. 唾液腺发育过程中,肌上皮细胞的形态发生和分化需要 Par-1b。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-10-01 Epub Date: 2016-11-14 DOI: 10.1080/15476278.2016.1252887
Elise M Gervais, Sharon J Sequeira, Weihao Wang, Stanley Abraham, Janice H Kim, Daniel Leonard, Kara A DeSantis, Melinda Larsen
{"title":"Par-1b is required for morphogenesis and differentiation of myoepithelial cells during salivary gland development.","authors":"Elise M Gervais, Sharon J Sequeira, Weihao Wang, Stanley Abraham, Janice H Kim, Daniel Leonard, Kara A DeSantis, Melinda Larsen","doi":"10.1080/15476278.2016.1252887","DOIUrl":"10.1080/15476278.2016.1252887","url":null,"abstract":"<p><p>The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells. The outermost layer of polarized epithelial cells assemble and organize the basal deposition of basement membrane, which requires basal positioning of the polarity protein, Par-1b. Whether Par-1b is required for the vertical compression and differentiation of the myoepithelial cells is unknown. Following manipulation of Par-1b in salivary gland organ explants, Par-1b-inhibited explants showed both a reduced vertical compression of differentiating myoepithelial cells and reduced levels of smooth muscle α-actin. Rac1 knockdown and inhibition of Rac GTPase function also inhibited branching morphogenesis. Since Rac regulates cellular morphology, we investigated a contribution for Rac in myoepithelial cell differentiation. Inhibition of Rac GTPase activity showed a similar reduction in vertical compression and smooth muscle α-actin levels while decreasing the levels of Par-1b protein and altering its basal localization in the outer cells. Inhibition of ROCK, which is required for basal positioning of Par-1b, resulted in mislocalization of Par-1b and loss of vertical cellular compression, but did not significantly alter levels of smooth muscle α-actin in these cells. Overexpression of Par-1b in the presence of Rac inhibition restored basement membrane protein levels and localization. Our results indicate that the basal localization of Par-1b in the outer epithelial cells is required for myoepithelial cell compression, and Par-1b is required for myoepithelial differentiation, regardless of its localization.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 1","pages":"194-216"},"PeriodicalIF":2.3,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"59981533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-7 suppresses osteogenic differentiation of periodontal ligament stem cells through inactivation of mitogen-activated protein kinase pathway. IL-7通过失活丝裂原活化蛋白激酶途径抑制牙周韧带干细胞成骨分化。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-10-01 Epub Date: 2016-08-31 DOI: 10.1080/15476278.2016.1229726
Cong-Xiang Jian, Quan-Shui Fan, Yong-He Hu, Yong He, Ming-Zhe Li, Wei-Yin Zheng, Yu Ren, Chen-Jun Li
{"title":"IL-7 suppresses osteogenic differentiation of periodontal ligament stem cells through inactivation of mitogen-activated protein kinase pathway.","authors":"Cong-Xiang Jian,&nbsp;Quan-Shui Fan,&nbsp;Yong-He Hu,&nbsp;Yong He,&nbsp;Ming-Zhe Li,&nbsp;Wei-Yin Zheng,&nbsp;Yu Ren,&nbsp;Chen-Jun Li","doi":"10.1080/15476278.2016.1229726","DOIUrl":"https://doi.org/10.1080/15476278.2016.1229726","url":null,"abstract":"<p><p>Periodontal ligament stem cells (PDLSCs) are tissue-specific mesenchymal stem cells (MSCs), having an important role in regenerative therapy for teeth loss. Interleukin-7 (IL-7) is a key cytokine produced by stromal cells including MSCs, and exhibits specific roles for B and T cell development and osteoblasts differentiation of multiple myeloma. However, the effect of IL-7 on osteogenic differentiation of PDLSCs remains unclear. Therefore, in the present study we determined whether IL-7 affects the proliferation and osteogenic differentiation of PDLSCs in vitro and explored the associated signaling pathways for IL-7-mediated cell differentiation. The results demonstrated that the isolated human PDLSCs possessed MSCs features, highly expressing CD90, CD44, CD105, CD29 and CD73, and almost did not expressed CD34, CD45, CD11b, CD14 and CD117. IL-7 could not significantly affect the proliferation of PDLSCs, but it decreased their osteogenic differentiation and inhibited alkaline phosphatase (ALP) activity. The results of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting exhibited that the expression levels of Runx-2, SP7 and osteocalcin (OCN) were significantly reduced by IL-7. Further studies indicated that IL-7 did not significantly change JNK, ERK1/2 and p38 protein production, but markedly suppressed their phosphorylation levels. These data suggest that IL-7 inhibits the osteogenic differentiation of PDLSCs probably via inactivation of mitogen-activated protein kinase (MAPK) signaling pathway.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 4","pages":"183-193"},"PeriodicalIF":2.3,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1229726","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34350268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Systematization of ambiguous genitalia. 模糊生殖器的系统化。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-10-01 Epub Date: 2016-07-08 DOI: 10.1080/15476278.2016.1210749
Zograb Makiyan
{"title":"Systematization of ambiguous genitalia.","authors":"Zograb Makiyan","doi":"10.1080/15476278.2016.1210749","DOIUrl":"https://doi.org/10.1080/15476278.2016.1210749","url":null,"abstract":"<p><p>Sex assignment in newborns depends on the anatomy of the external genitalia, despite this stage being the final in embryogenesis. According to the current view, the genital tubercle is the embryonic precursor of penis and clitoris. It originates from mesenchymal tissue, but mesenchymal cells are arranged across the embryonal body and do not have specific androgen receptors. The nature of the signal that initiates early derivation of the indifferent genital tubercle is unknown at present. The aims of this article are to improve surgical management of intersex disorders and investigate the development of the genital tubercle. Clinical examination of 114 females with various forms of DSD revealed ambiguous (bisexual) external genitalia in 73 patients, and 51 of them underwent feminizing surgery. Intersexuality (ambiguity) in 46,XY patients results from disruptors in the pathways of sex steroid hormones or receptors; in 46,XX females arises from excessive levels of androgens. Systematization of intersex disorders distinguishes the karyotype, gonadal morphology, and genital anatomy to provide a differential diagnosis and guide appropriate surgical management. Modified feminizing clitoroplasty with preservation of the dorsal and ventral neurovascular bundles to retain erogenous sensitivity was performed in females with severe virilization (Prader degree III-V). The outgrowth of the genital tubercle and the fusion of the urethral fold proceed in an ordered fashion; but in some cases of ambiguity, there was discordance due to different pathways. Speculation about the derivation of the genital tubercle have discussed with a literature review. The genital tubercle derives from the following 3 layers: the ectodermal glans of the tubercle, the mesodermal corpora cavernosa and the endodermal urogenital groove. According to the new hypothesis, during the indifferent stages, the 5 sacral somites have to recede from their segmentation and disintegrate: the sclerotomes form the pelvic bones, the fused myotomes follow with their genuine neurotomes and the angiotomes join to the corpora cavernosa of the genital tubercle. Sexual differentiation of external genitalia is final in gender embryogenesis, but surprisingly derivation of the indifferent genital tubercle from 5 somites occurs before gonadal and internal organs development.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 4","pages":"169-182"},"PeriodicalIF":2.3,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1210749","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34648553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
A concise review of common animal models for the study of limb regeneration. 简要综述用于肢体再生研究的常用动物模型。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-07-02 Epub Date: 2016-07-08 DOI: 10.1080/15476278.2016.1205775
Zayd Farah, Huimin Fan, Zhongmin Liu, Jia-Qiang He
{"title":"A concise review of common animal models for the study of limb regeneration.","authors":"Zayd Farah,&nbsp;Huimin Fan,&nbsp;Zhongmin Liu,&nbsp;Jia-Qiang He","doi":"10.1080/15476278.2016.1205775","DOIUrl":"https://doi.org/10.1080/15476278.2016.1205775","url":null,"abstract":"<p><p>Correct selection of an appropriate animal mode to closely mimic human extremity diseases or to exhibit desirable phenotypes of limb regeneration is the first critical step for all scientists in biomedical and regenerative researches. The commonly-used animals in limb regeneration and repairing studies, such as axolotl, mice, and rats, are discussed in the review and other models including cockroaches, dogs, and horses are also mentioned. The review weighs the general advantages, disadvantages, and precedent uses of each model in the context of limb and peripheral injury and subsequent regeneration. We hope that this review can provide the reader an overview of each model, from which to select one for their specific purpose.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 3","pages":"109-118"},"PeriodicalIF":2.3,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1205775","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34713491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Decellularized spleen matrix for reengineering functional hepatic-like tissue based on bone marrow mesenchymal stem cells. 基于骨髓间充质干细胞再造功能性肝样组织的脱细胞脾基质。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-07-02 Epub Date: 2016-05-09 DOI: 10.1080/15476278.2016.1185584
Junxi Xiang, Xinglong Zheng, Peng Liu, Lifei Yang, Dinghui Dong, Wanquan Wu, Xuemin Liu, Jianhui Li, Yi Lv
{"title":"Decellularized spleen matrix for reengineering functional hepatic-like tissue based on bone marrow mesenchymal stem cells.","authors":"Junxi Xiang,&nbsp;Xinglong Zheng,&nbsp;Peng Liu,&nbsp;Lifei Yang,&nbsp;Dinghui Dong,&nbsp;Wanquan Wu,&nbsp;Xuemin Liu,&nbsp;Jianhui Li,&nbsp;Yi Lv","doi":"10.1080/15476278.2016.1185584","DOIUrl":"https://doi.org/10.1080/15476278.2016.1185584","url":null,"abstract":"<p><strong>Background and aims: </strong>Decellularized liver matrix (DLM) hold great potential for reconstructing functional hepatic-like tissue (HLT) based on reseeding of hepatocytes or stem cells, but the shortage of liver donors is still an obstacle for potential application. Therefore, an appropriate alternative scaffold is needed to expand the donor pool. In this study, we explored the effectiveness of decellularized spleen matrix (DSM) for culturing of bone marrow mesenchymal stem cells (BMSCs), and promoting differentiation into hepatic-like cells.</p><p><strong>Methods: </strong>Rats' spleen were harvested for DSM preparation by freezing/thawing and perfusion procedure. Then the mesenchymal stem cells derived from rat bone marrow were reseeded into DSM for dynamic culture and hepatic differentiation by a defined induction protocol.</p><p><strong>Results: </strong>The research found that DSM preserved a 3-dimensional porous architecture, with native extracellular matrix and vascular network which was similar to DLM. The reseeded BMSCs in DSM differentiated into functional hepatocyte-like cells, evidenced by cytomorphology change, expression of hepatic-associated genes and protein markers, glycogen storage, and indocyanine green uptake. The albumin production (2.74±0.42 vs. 2.07±0.28 pg/cell/day) and urea concentration (75.92±15.64 vs. 52.07±11.46 pg/cell/day) in DSM group were remarkably higher than tissue culture flasks (TCF) group over the same differentiation period, P< 0.05.</p><p><strong>Conclusion: </strong>This present study demonstrated that DSM might have considerable potential in fabricating hepatic-like tissue, particularly because it can facilitate hepatic differentiation of BMSCs which exhibited higher level and more stable functions.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 3","pages":"128-142"},"PeriodicalIF":2.3,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1185584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34466115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Current challenges in dedifferentiated fat cells research. 去分化脂肪细胞研究的当前挑战。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-07-02 Epub Date: 2016-06-20 DOI: 10.1080/15476278.2016.1197461
Mickey Shah, Richard L George, M Michelle Evancho-Chapman, Ge Zhang
{"title":"Current challenges in dedifferentiated fat cells research.","authors":"Mickey Shah,&nbsp;Richard L George,&nbsp;M Michelle Evancho-Chapman,&nbsp;Ge Zhang","doi":"10.1080/15476278.2016.1197461","DOIUrl":"https://doi.org/10.1080/15476278.2016.1197461","url":null,"abstract":"<p><p>Dedifferentiated fat cells show great promises as a novel cell source for stem cell research. It has many advantages when used for cell-based therapeutics including abundance, pluripotency, and safety. However, there are many obstacles researchers need to overcome to make the next big move in DFAT cells research. In this review, we summarize the current main challenges in DFAT cells research including cell culture purity, phenotypic properties, and dedifferentiation mechanisms. The common methods to produce DFAT cells as well as the cell purity issue during DFAT cell production have been introduced. Current approaches to improve DFAT cell purity have been discussed. The phenotypic profile of DFAT cells have been listed and compared with other stem cells. Further studies on elucidating the underlying dedifferentiation mechanisms will dramatically advance DFAT cell research.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 3","pages":"119-127"},"PeriodicalIF":2.3,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1197461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34658840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Involvement of IGF-2, IGF-1R, IGF-2R and PTEN in development of human tooth germ - an immunohistochemical study. IGF-2、IGF-1R、IGF-2R和PTEN参与人牙胚发育的免疫组织化学研究
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-07-02 Epub Date: 2016-06-21 DOI: 10.1080/15476278.2016.1197460
Darko Kero, Livia Cigic, Ivana Medvedec Mikic, Tea Galic, Mladen Cubela, Katarina Vukojevic, Mirna Saraga-Babic
{"title":"Involvement of IGF-2, IGF-1R, IGF-2R and PTEN in development of human tooth germ - an immunohistochemical study.","authors":"Darko Kero,&nbsp;Livia Cigic,&nbsp;Ivana Medvedec Mikic,&nbsp;Tea Galic,&nbsp;Mladen Cubela,&nbsp;Katarina Vukojevic,&nbsp;Mirna Saraga-Babic","doi":"10.1080/15476278.2016.1197460","DOIUrl":"https://doi.org/10.1080/15476278.2016.1197460","url":null,"abstract":"<p><p>Insulin-Like Growth Factor 2 (IGF-2) is a peptide hormone essential for prenatal growth and development. IGF-2 exerts its mitogenic effects via Insulin-Like Growth Factor 1 Receptor (IGF-1R), and is eliminated by binding to Insulin-Like Growth Receptor 2 (IGF-2R). IGF-2 is also negatively regulated by Phosphatase and Tensin Homolog (PTEN), a phosphatase mutated in various tumors. Not much is known about the interplay between these factors during human odontogenesis. In this study, expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN were analyzed by double immunofluorescence in incisor human tooth germs during the foetal period of development between the 7<sup>th</sup> and 20<sup>th</sup> gestational week. Throughout the investigated period, IGF-2 was mostly expressed in enamel organ, whereas mild to moderate expression of PTEN could be seen in dental papilla and parts of enamel organ. Expression of IGF-1R was ubiquitous and displayed strong intensity throughout the entire enamel organ. In contrast, expression of IGF-2R had rather erratic pattern in enamel organ and dental papilla alike. Expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN in highly proliferative cervical loops, as well as in differentiating pre-ameloblasts and pre-odontoblasts of cusp tip region during the early and late bell stages when enamel organ acquires definitive shape, indicate importance of these factors in crown morphogenesis of human incisor. Taken together, our data suggest the involvement of IGF-2, IGF-1R, IGF-2R and PTEN in temporo-spatial patterning of basic cellular processes (proliferation, differentiation) during normal tooth development. They are also relevant for improving knowledge of molecular basis of human odontogenesis.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 3","pages":"152-167"},"PeriodicalIF":2.3,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1197460","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34598016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Vitamin C promotes the proliferation of human adipose-derived stem cells via p53-p21 pathway. 维生素C通过p53-p21途径促进人脂肪来源干细胞的增殖。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-07-02 Epub Date: 2016-05-26 DOI: 10.1080/15476278.2016.1194148
Peihua Zhang, Jin Li, Yawei Qi, Yaqing Zou, Li Liu, Xudong Tang, Jianfeng Duan, Hongwei Liu, Guofang Zeng
{"title":"Vitamin C promotes the proliferation of human adipose-derived stem cells via p53-p21 pathway.","authors":"Peihua Zhang,&nbsp;Jin Li,&nbsp;Yawei Qi,&nbsp;Yaqing Zou,&nbsp;Li Liu,&nbsp;Xudong Tang,&nbsp;Jianfeng Duan,&nbsp;Hongwei Liu,&nbsp;Guofang Zeng","doi":"10.1080/15476278.2016.1194148","DOIUrl":"https://doi.org/10.1080/15476278.2016.1194148","url":null,"abstract":"<p><p>Although adipose-derived stem cells (ADSCs) have demonstrated a promising potential for the applications of cell-based therapy and regenerative medicine, excessive reactive oxygen species (ROS) are harmful to ADSCs cell survival and proliferation. Vitamin C is an important antioxidant, and is often added into culture media as an essential micronutrient. However, its roles on the proliferation of human ADSCs have not been studied. Therefore, in this study, human ADSCs were isolated, and detected by flow cytometry for the analysis of their cell surface antigens. Cell proliferation and cell cycle progression were measured with cell counting kit-8 assay and flow cytometry, respectively. Western blotting was used to detect the expression levels of cyclin E1, p53, p21, and CDK2 proteins. The effect of vitamin C pretreatment on the production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-mediated ROS in the ADSCs was evaluated by flow cytometry. Our results indicated that vitamin C treatment significantly increased cell proliferation, and changed the cell cycle distribution of ADSCs by decreasing the percentage of G<sub>1</sub> phase, and concurrently increased the percentage of S and G<sub>2</sub>/M phase. Western blot analysis indicated that vitamin C treatment up-regulated the expression levels of cyclin E1 and CDK2, but down-regulated p53 and p21 proteins expression, which contributed to cell proliferation and cell cycle progression. Vitamin C pretreatment significantly reduced the production of H<sub>2</sub>O<sub>2</sub>-induced ROS in the ADSCs. These findings suggest that vitamin C can promote the proliferation and cell cycle progression in the ADSCs possibly through regulation of p53-p21 signal pathway.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 3","pages":"143-151"},"PeriodicalIF":2.3,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1194148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34523711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Biomedical therapy using synthetic WKYMVm hexapeptide. 利用合成WKYMVm六肽进行生物医学治疗。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2016-04-02 Epub Date: 2016-04-14 DOI: 10.1080/15476278.2016.1172155
Young Hwan Choi, Il Ho Jang, Soon Chul Heo, Jae Ho Kim, Nathaniel S Hwang
{"title":"Biomedical therapy using synthetic WKYMVm hexapeptide.","authors":"Young Hwan Choi,&nbsp;Il Ho Jang,&nbsp;Soon Chul Heo,&nbsp;Jae Ho Kim,&nbsp;Nathaniel S Hwang","doi":"10.1080/15476278.2016.1172155","DOIUrl":"https://doi.org/10.1080/15476278.2016.1172155","url":null,"abstract":"<p><p>WKYMVm hexapeptide has been identified as a strong FPR2 agonist through a library screening of synthetic peptides. The FPR2 has been reported to play a crucial role in inflammation and angiogenic responses via stimulation of chemotaxis, migration, cell proliferation, wound healing and vessel growth. Recently, the therapeutic effects of WKYMVm have been reported in various disease models. In cutaneous wound model in diabetic mice, WKYMVm facilitated wound healing processes by stimulating the formation of capillary and arteriole and re-epithelialization. In coronary artery stenosis model, WKYMVm coating on stent promoted re-endothelialization and lowered restenosis rate. In hindlimb ischemia mouse model, intramuscular injection of WKYMVm promoted homing of exogenously transplanted endothelial colony-forming cells and neovascularization, resulting in salvaging hindlimb. Furthermore, a single injection of WKYMVm encapsulated in poly (lactide-co-glycolide) microspheres was demonstrated to be as efficient as multiple injections of WKYMVm in restoring blood flow in hindlimb ischemia model. These observations may open up promising biomedical applications of WKYMVm for tissue repairs and regenerations.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"12 2","pages":"53-60"},"PeriodicalIF":2.3,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2016.1172155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34403558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信