{"title":"The neuronal differentiation microenvironment is essential for spinal cord injury repair.","authors":"Yannan Zhao, Zhifeng Xiao, Bing Chen, Jianwu Dai","doi":"10.1080/15476278.2017.1329789","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) often leads to substantial disability due to loss of motor function and sensation below the lesion. Neural stem cells (NSCs) are a promising strategy for SCI repair. However, NSCs rarely differentiate into neurons; they mostly differentiate into astrocytes because of the adverse microenvironment present after SCI. We have shown that myelin-associated inhibitors (MAIs) inhibited neuronal differentiation of NSCs. Given that MAIs activate epidermal growth factor receptor (EGFR) signaling, we used a collagen scaffold-tethered anti-EGFR antibody to attenuate the inhibitory effects of MAIs and create a neuronal differentiation microenvironment for SCI repair. The collagen scaffold modified with anti-EGFR antibody prevented the inhibition of NSC neuronal differentiation by myelin. After transplantation into completely transected SCI animals, the scaffold-linked antibodies induced production of nascent neurons from endogenous and transplanted NSCs, which rebuilt the neuronal relay by forming connections with each other or host neurons to transmit electrophysiological signals and promote functional recovery. Thus, a scaffold-based strategy for rebuilding the neuronal differentiation microenvironment could be useful for SCI repair.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"13 3","pages":"63-70"},"PeriodicalIF":1.6000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2017.1329789","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2017.1329789","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/6/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 33
Abstract
Spinal cord injury (SCI) often leads to substantial disability due to loss of motor function and sensation below the lesion. Neural stem cells (NSCs) are a promising strategy for SCI repair. However, NSCs rarely differentiate into neurons; they mostly differentiate into astrocytes because of the adverse microenvironment present after SCI. We have shown that myelin-associated inhibitors (MAIs) inhibited neuronal differentiation of NSCs. Given that MAIs activate epidermal growth factor receptor (EGFR) signaling, we used a collagen scaffold-tethered anti-EGFR antibody to attenuate the inhibitory effects of MAIs and create a neuronal differentiation microenvironment for SCI repair. The collagen scaffold modified with anti-EGFR antibody prevented the inhibition of NSC neuronal differentiation by myelin. After transplantation into completely transected SCI animals, the scaffold-linked antibodies induced production of nascent neurons from endogenous and transplanted NSCs, which rebuilt the neuronal relay by forming connections with each other or host neurons to transmit electrophysiological signals and promote functional recovery. Thus, a scaffold-based strategy for rebuilding the neuronal differentiation microenvironment could be useful for SCI repair.
期刊介绍:
Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes.
The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering.
The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.