Organogenesis最新文献

筛选
英文 中文
Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system 应用封闭超声系统对脱细胞主动脉支架的表征和体内研究
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-09-07 DOI: 10.1080/15476278.2019.1656997
A. Hazwani, M. Sha'ban, A. Azhim
{"title":"Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system","authors":"A. Hazwani, M. Sha'ban, A. Azhim","doi":"10.1080/15476278.2019.1656997","DOIUrl":"https://doi.org/10.1080/15476278.2019.1656997","url":null,"abstract":"ABSTRACT Extracellular matrix (ECM) based bioscaffolds prepared by decellularization has increasingly emerged in tissue engineering application because it has structural, biochemical, and biomechanical cues that have dramatic effects upon cell behaviors. Therefore, we developed a closed sonication decellularization system to prepare ideal bioscaffolds with minimal adverse effects on the ECM. The decellularization was achieved at 170 kHz of ultrasound frequency in 0.1% and 2% Sodium Dodecyl Sulphate (SDS) solution for 10 hours. The immersion treatment as control was performed to compare the decellularization efficiency with our system. Cell removal and ECM structure were determined by histological staining and biochemical assay. Biomechanical properties were investigated by the indentation testing to test the stiffness, a residual force and compression of bioscaffolds. Additionally, in vivo implantation was performed in rat to investigate host tissue response. Compared to native tissues, histological staining and biochemical assay confirm the absence of cellularity with preservation of ECM structure. Moreover, sonication treatment has not affected the stiffness [N/mm] and a residual force [N] of the aortic scaffolds except for compression [%] which 2% SDS significantly decreased compared to native tissues showing higher SDS has a detrimental effect on ECM structure. Finally, minimal inflammatory response was observed after 1 and 5 weeks of implantation. This study reported that the novelty of our developed closed sonication system to prepare ideal bioscaffolds for tissue engineering applications.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1656997","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48202411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Advances of Wnt signalling pathway in dental development and potential clinical application Wnt信号通路在口腔发育中的研究进展及临床应用前景
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-09-04 DOI: 10.1080/15476278.2019.1656996
Xi Lu, Jun Yang, Shouliang Zhao, Shangfeng Liu
{"title":"Advances of Wnt signalling pathway in dental development and potential clinical application","authors":"Xi Lu, Jun Yang, Shouliang Zhao, Shangfeng Liu","doi":"10.1080/15476278.2019.1656996","DOIUrl":"https://doi.org/10.1080/15476278.2019.1656996","url":null,"abstract":"ABSTRACT Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1656996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44866948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Specification of Sprouty2 functions in osteogenesis in in vivo context Sprouty2在体内成骨中的功能规范
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-09-04 DOI: 10.1080/15476278.2019.1656995
B. Veselá, E. Svandova, M. Hovořáková, R. Peterkova, A. Kratochvílová, Martina Pasovská, A. Ramešová, H. Lesot, E. Matalova
{"title":"Specification of Sprouty2 functions in osteogenesis in in vivo context","authors":"B. Veselá, E. Svandova, M. Hovořáková, R. Peterkova, A. Kratochvílová, Martina Pasovská, A. Ramešová, H. Lesot, E. Matalova","doi":"10.1080/15476278.2019.1656995","DOIUrl":"https://doi.org/10.1080/15476278.2019.1656995","url":null,"abstract":"ABSTRACT Sprouty proteins are modulators of the MAPK/ERK pathway. Amongst these, Sprouty2 (SPRY2) has been investigated as a possible factor that takes part in the initial phases of osteogenesis. However, the in vivo context has not yet been investigated and the underlying mechanisms taking place in vitro remain unknown. Therefore, in this study, the impact of Spry2 deficiency was examined in the developing tibias of Spry2 deficient (-/-) mouse. The investigation was performed when the osteogenic zone became clearly visible and when all three basic bone cells types were present. The main markers of osteoblasts, osteocytes and osteoclasts were evaluated by immunohistochemistry and RT-PCR. RT-PCR showed that the expression of Sost was 3.5 times higher in Spry2-/- than in the wild-type bone, which pointed to a still unknown mechanism of action of SPRY2 on the differentiation of osteocytes. The up-regulation of Sost was independent of Hif-1α expression and could not be related to its positive regulator, Runx2, since none of these factors showed an increased expression in the bone of Spry2-/- mice. Regarding the RANK/RANKL/OPG pathway, the Spry2-/- showed an increased expression of Rank, but no significant change in the expression of Rankl and Opg. Thanks to these results, the impact of Spry2 deletion is shown for the first time in the developing bone as a complex organ including, particularly, an effect on osteoblasts (Runx2) and osteocytes (Sost). This might explain the previously reported decrease in bone formation in postnatal Spry2-/- mice.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1656995","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42520041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Expression and role of HIF-1α and HIF-2α in tissue regeneration: a study of hypoxia in house gecko tail regeneration HIF-1α和HIF-2α在组织再生中的表达及作用:缺氧对壁虎尾部再生的研究
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-07-03 DOI: 10.1080/15476278.2019.1644889
T. Novianti, V. Juniantito, A. A. Jusuf, E. Arida, S. A. Jusman, M. Sadikin
{"title":"Expression and role of HIF-1α and HIF-2α in tissue regeneration: a study of hypoxia in house gecko tail regeneration","authors":"T. Novianti, V. Juniantito, A. A. Jusuf, E. Arida, S. A. Jusman, M. Sadikin","doi":"10.1080/15476278.2019.1644889","DOIUrl":"https://doi.org/10.1080/15476278.2019.1644889","url":null,"abstract":"ABSTRACT The house gecko (Hemidactylus platyurus) has evolved the ability to autotomize its tail when threatened. The lost part is then regrown via epimorphic regeneration in a process that requires high energy and oxygen levels. Oxygen demand is therefore likely to outstrip supply and this can result in relative hypoxia in the tissues of the regenerating tail. The hypoxic state is stabilized by the Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α proteins. We induced tail autotomy in 30 mal H. platyurus adults using a standard procedure and then collected samples of the regenerated tail tissue on days 1, 3, 5, 8, 10, 13, 17, 21, 25, and 30 post autotomy. For each sample, mRNA expression was analyzed by qPCR, proteins were analyzed using Western Blot tests and immunohistochemistry, and the histological structure was analyzed using Hematoxylin and Eosin staining. On day 1, HIF-1α mRNA expression increased and the tissue was dominated by leucocyte and erythrocyte cells. HIF-1α mRNA expression peaked on day 3, at which time some cells were actively proliferating, migrating, and differentiating. At the same time as HIF-1α expression decreased, HIF-2α mRNA expression increased, as did overall cellular activity. HIF-2α expression increased more gradually but was present over a longer period of time than HIF-1α. We hypothesize that HIF-1α helps to initially stimulate the tissue regeneration process while HIF-2α functionally takes over the role of HIF-1α after HIF-1α succumbs to the oxygen conditions, but we suspect that both HIF-1α and HIF-2α play a role in overcoming the tissue’s hypoxic state.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1644889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46259441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
In vivo construction of lymphoid node by implantation of adipose-derived stromal cells with hydroxypropyl methyl cellulose hydrogel in BALB/c nude mice 羟丙基甲基纤维素水凝胶植入脂肪基质细胞在BALB/c裸鼠体内构建淋巴结
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-07-03 DOI: 10.1080/15476278.2019.1656994
Jing Zhang, Yuqiao Xu, Tao Liu, Jie Min, Yu Ma, Yongli Song, Jianrong Lu, Wen-juan Mi, Yingmei Wang, Hang Li, Wangzhou Li, Da-Qing Zhao
{"title":"In vivo construction of lymphoid node by implantation of adipose-derived stromal cells with hydroxypropyl methyl cellulose hydrogel in BALB/c nude mice","authors":"Jing Zhang, Yuqiao Xu, Tao Liu, Jie Min, Yu Ma, Yongli Song, Jianrong Lu, Wen-juan Mi, Yingmei Wang, Hang Li, Wangzhou Li, Da-Qing Zhao","doi":"10.1080/15476278.2019.1656994","DOIUrl":"https://doi.org/10.1080/15476278.2019.1656994","url":null,"abstract":"ABSTRACT Adipose-derived stromal cells have multilineage potential to differentiate into several specialized tissue types. Herein, we investigated whether ADSCs could differentiate into lymphoid node in vivo. Human ADSCs from routine liposuction were cultured in differentiation medium and were supplemented with transforming growth factor β1 (TGF)-β1 and basic fibroblast growth factor (bFGF). The induced hADSCs mixed with 13% (w/v) hydroxypropyl methylcellulose (HPMC) were injected into BALB/c nude mice subcutaneously. Eight weeks later, nodules were found under the injected sites. Histology, immunohistochemistry, and species identification analysis confirmed that the nodules were lymphoid nodes that were derived from the injected hADSCs. Our experiment demonstrated that the hADSCs could differentiate into lymphocyte-like cells and form lymphoid nodes in vivo. TGF-β1 and bFGF might play important roles in the differentiation of hADSCs into lymphocyte-like cells. Our study might present an alternative approach for engineering immune organs and thus offer potential treatment for immunodeficiency diseases.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1656994","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48504660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis latipina Poecilia尾鳍的再生:对进行性组织形态发生的见解
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-04-03 DOI: 10.1080/15476278.2019.1633168
Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan
{"title":"Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis","authors":"Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan","doi":"10.1080/15476278.2019.1633168","DOIUrl":"https://doi.org/10.1080/15476278.2019.1633168","url":null,"abstract":"ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1633168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46993561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ectopic localization of autophagosome in fatty liver is a key factor for liver regeneration. 脂肪肝中自噬体的异位定位是肝再生的关键因素。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-01-01 Epub Date: 2019-07-06 DOI: 10.1080/15476278.2019.1633872
Yoshihiro Matsumoto, Tomoharu Yoshizumi, Takeo Toshima, Kazuki Takeishi, Takasuke Fukuhara, Shinji Itoh, Toru Ikegami, Yuji Soejima, Masaki Mori
{"title":"Ectopic localization of autophagosome in fatty liver is a key factor for liver regeneration.","authors":"Yoshihiro Matsumoto,&nbsp;Tomoharu Yoshizumi,&nbsp;Takeo Toshima,&nbsp;Kazuki Takeishi,&nbsp;Takasuke Fukuhara,&nbsp;Shinji Itoh,&nbsp;Toru Ikegami,&nbsp;Yuji Soejima,&nbsp;Masaki Mori","doi":"10.1080/15476278.2019.1633872","DOIUrl":"https://doi.org/10.1080/15476278.2019.1633872","url":null,"abstract":"<p><p>Autophagy has a critical role in liver regeneration. However, no studies have demonstrated autophagic flux in the regenerating fatty liver. The aim of this study was to clarify the dynamics of autophagy in the regeneration of the fatty liver. Following 70% partial hepatectomy (PH) in db/db fatty mice, which is a non-alcoholic fatty liver disease (NAFLD) model, we investigated the survival rate and recovery of liver volume. Histological examination of the regenerating liver was examined using electron microscopy. The 7-day survival rate after PH in db/db mice was 20%, which was significantly lower than that in control mice (<i>P</i>< .01). Liver regeneration within 48 h after PH was significantly impaired in db/db mice (<i>P</i>< .05). The number of proliferating cell nuclear antigen (PCNA) positive cells and the expression levels of cell-cycle markers cyclins D, E, and A were lower in db/db mice compared with controls. In the regenerating liver, LC3-II level was higher in db/db mice, but p62 expression was increased and cathepsin D expression, a marker of autophagolysosome proteolysis, was decreased compared with controls. Additionally, electronic microscopy revealed that autophagosomes during liver regeneration in db/db mice were mainly located in lipid droplets. Our findings indicate that the different localization of autophagosomes in db/db mice compared with controls led to impairment of liver regeneration in the fatty liver.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1633872","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37137743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Anatomical structure, and expression of CCL4 and CCL13-like during the development of maxillary barbel in Paramisgurnus dabryanus. 大鳞副龙上颌倒钩发育过程中CCL4和ccl13样蛋白的表达及解剖结构。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-01-01 Epub Date: 2019-07-06 DOI: 10.1080/15476278.2019.1633870
Kianann Tan, Ruijing Geng, Zhiqiang Wang, Han Liu, Weimin Wang
{"title":"Anatomical structure, and expression of <i>CCL4</i> and <i>CCL13-like</i> during the development of maxillary barbel in <i>Paramisgurnus dabryanus</i>.","authors":"Kianann Tan,&nbsp;Ruijing Geng,&nbsp;Zhiqiang Wang,&nbsp;Han Liu,&nbsp;Weimin Wang","doi":"10.1080/15476278.2019.1633870","DOIUrl":"https://doi.org/10.1080/15476278.2019.1633870","url":null,"abstract":"<p><p><i>Paramisgurnus dabryanus</i> is one of the most economically important fishes in China. Barbels are an essential sensory organ for the food-seeking ability of teleost fish. However, the anatomical structure of the maxillary barbels of <i>P. dabryanus</i> and the molecular basis of their development are unknown. We investigated the anatomical structure of the barbel, and gene expression patterns of two chemokine C-C motif ligands: <i>CCL4</i> and <i>CCL13-like</i> during the maxillary barbel development using Masson Trichrome staining, light and electron microscopy, and qPCR. Anatomically, the maxillary barbel of <i>P. dabryanus</i> contains taste buds, melanophores, collagen fibers, connective tissue, smooth muscles, nerve bundles, and blood vessels, but does not have skeletal muscles or a skeleton rod. The expression of <i>CCL4</i> and <i>CCL13-like</i> was weak or non-existent in the early phases of development, but high at the last two studied time-points: 192- and 216-h post-hatching. Results indicated that <i>CCL4</i> and <i>CCL13-like</i> were related to the development of the maxillary barbel.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1633870","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37400639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent Wnt/β-catenin signaling in mouse epithelium induces the ectopic Dspp expression in cheek mesenchyme. 小鼠上皮中持续的Wnt/β-catenin信号传导可诱导颊间质中Dspp的异位表达。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-01-01 Epub Date: 2018-12-20 DOI: 10.1080/15476278.2018.1557026
Nan Zhou, Nan Li, Jing Liu, Yu Wang, Jun Gao, Yingzhang Wu, Xiaoyan Chen, Chao Liu, Jing Xiao
{"title":"Persistent Wnt/β-catenin signaling in mouse epithelium induces the ectopic <i>Dspp</i> expression in cheek mesenchyme.","authors":"Nan Zhou,&nbsp;Nan Li,&nbsp;Jing Liu,&nbsp;Yu Wang,&nbsp;Jun Gao,&nbsp;Yingzhang Wu,&nbsp;Xiaoyan Chen,&nbsp;Chao Liu,&nbsp;Jing Xiao","doi":"10.1080/15476278.2018.1557026","DOIUrl":"https://doi.org/10.1080/15476278.2018.1557026","url":null,"abstract":"<p><p>Tooth development is accomplished by a series of epithelial-mesenchyme interactions. Epithelial Wnt/β-catenin signaling is sufficient to initiate tooth development by activating <i>Shh, Bmps, Fgfs</i> and <i>Wnts</i> in dental epithelium, which in turn, triggered the expression of odontogenic genes in the underlying mesenchyme. Although constitutive activation of Wnt/β-catenin signaling in oral ectoderm resulted in the continuous tooth formation throughout the life span, if the epithelial Wnt/β-catenin signaling could induce the mesenchyme other than oral mesenchyme still required to be elucidated. In this study, we found that in the <i>K14-cre; Ctnnb1<sup>ex3f</sup></i> mice, the markers of dental epithelium, such as <i>Pitx2, Shh, Bmp2, Fgf4</i>, and <i>Fgf8</i>, were not only activated in the oral ectoderm, but also in the cheek epithelium. Surprisingly, the underlying cheek mesenchymal cells were elongated and expressed <i>Dspp</i>. Further investigations detected that the expression of <i>Msx1</i> and <i>Runx2</i> extended from oral to cheek mesenchyme. These findings suggested that epithelial Wnt/β-catenin signaling was capable of inducing <i>Dspp</i> expression in non-dental mesenchyme. Moreover, <i>Dspp</i> expression in the <i>K14-cre; Ctnnb1<sup>ex3f</sup></i> oral mesenchyme was activated earlier than that in the wild type littermates. In contrast, although the elongated oral epithelial cells were detected in the <i>K14-cre; Ctnnb1<sup>ex3f</sup></i> mice, the <i>Amelogenin</i> expression was suppressed. The differential effects of the persistent epithelial Wnt/β-catenin signaling on ameloblast and odontoblast differentiation might result from the altered BMP signaling. In summary, our findings suggested that the epithelial Wnt/β-catenin signaling could induce craniofacial mesenchyme into odontogenic program and promote odontoblast differentiation.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2018.1557026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36844466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mesenchymal Wnt/β-catenin signaling induces Wnt and BMP antagonists in dental epithelium. 牙上皮间充质Wnt/β-catenin信号传导诱导Wnt和BMP拮抗剂。
IF 2.3 4区 生物学
Organogenesis Pub Date : 2019-01-01 Epub Date: 2019-06-26 DOI: 10.1080/15476278.2019.1633871
Xiaoyan Chen, Jing Liu, Nan Li, Yu Wang, Nan Zhou, Lei Zhu, Yiding Shi, Yingzhang Wu, Jing Xiao, Chao Liu
{"title":"Mesenchymal Wnt/β-catenin signaling induces Wnt and BMP antagonists in dental epithelium.","authors":"Xiaoyan Chen,&nbsp;Jing Liu,&nbsp;Nan Li,&nbsp;Yu Wang,&nbsp;Nan Zhou,&nbsp;Lei Zhu,&nbsp;Yiding Shi,&nbsp;Yingzhang Wu,&nbsp;Jing Xiao,&nbsp;Chao Liu","doi":"10.1080/15476278.2019.1633871","DOIUrl":"https://doi.org/10.1080/15476278.2019.1633871","url":null,"abstract":"<p><p>Previous studies indicated that the elevated mesenchymal Wnt/β-catenin signaling deprived dental mesenchyme of odontogenic fate. By utilizing <i>ex vivo</i> or pharmacological approaches, Wnt/β-catenin signaling in the developing dental mesenchyme was suggested to suppress the odontogenic fate by disrupting the balance between Axin2 and Runx2. In our study, the <i>Osr2-cre<sup>KI</sup>; Ctnnb1<sup>ex3f</sup></i> mouse was used to explore how mesenchymal Wnt/β-catenin signaling suppressed the odontogenic fate <i>in vivo</i>. We found that all of the incisor and half of the molar germs of <i>Osr2-cre<sup>KI</sup>; Ctnnb1<sup>ex3f</sup></i>mice started to regress at E14.5 and almost disappeared at birth. The expression of <i>Fgf3</i> and <i>Msx1</i> was dramatically down-regulated in the E14.5 <i>Osr2-cre<sup>KI</sup>; Ctnnb1<sup>ex3f</sup></i> incisor and molar mesenchyme, while <i>Runx2</i>transcription was only diminished in incisor mesenchyme. Intriguingly, in the E14.5 <i>Osr2-cre<sup>KI</sup>; Ctnnb1<sup>ex3f</sup></i> incisor epithelium, the expression of <i>Noggin</i> was activated, while <i>Shh</i> was abrogated. Similarly, the Wnt and BMP antagonists, <i>Ectodin</i> and <i>Noggin</i> were also ectopically activated in the E14.5 <i>Osr2-cre<sup>KI</sup>; Ctnnb1<sup>ex3f</sup></i> molar epithelium. Recombination of E13.5 <i>Osr2-cre<sup>KI</sup>; Ctnnb1<sup>ex3f</sup></i> molar mesenchyme with E10.5 and E13.5 WT dental epithelia failed to develop tooth. Taken together, the mesenchymal Wnt/β-catenin signaling resulted in the loss of odontogenic fate <i>in vivo</i> not only by directly suppressing odontogenic genes expression but also by inducing Wnt and BMP antagonists in dental epithelium.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1633871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37362980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信