Airway reconstruction using decellularized aortic xenografts in a dog model.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Organogenesis Pub Date : 2020-07-02 Epub Date: 2020-07-16 DOI:10.1080/15476278.2020.1790273
Shao-Fei Cheng, Song Wu, Qian-Ping Li, Hong-Yang Sang, Zheng-Yang Fan
{"title":"Airway reconstruction using decellularized aortic xenografts in a dog model.","authors":"Shao-Fei Cheng,&nbsp;Song Wu,&nbsp;Qian-Ping Li,&nbsp;Hong-Yang Sang,&nbsp;Zheng-Yang Fan","doi":"10.1080/15476278.2020.1790273","DOIUrl":null,"url":null,"abstract":"<p><p>Tracheal reconstruction after extensive resection remains a challenge in thoracic surgery. Aortic allograft has been proposed to be a potential tracheal substitute. However, clinically, its application is limited for the shortage of autologous aortic segment. Whether xenogeneic aortic biosheets can be used as tracheal substitutes remains unknown. In the present study, we investigated the possibility in dog model. The results show that all dogs were survived without airway symptoms at 6 months after tracheal reconstruction with gently decellularized bovine carotid arteries. In the interior of engrafted areas, grafted patch integrated tightly with the residual native tracheal tissues and tracheal defects in the lumen were repaired smoothly without obvious inflammation, granulation, anastomotic leakage, or stenosis. In addition, histological and scanning electron microscopy examination showed that grafted patches were covered with ciliated columnar epithelium similar to epithelium in native trachea, which indicated successfully re-epithelialization of decellularized bovine carotid arteries in dogs. These findings provide preclinical investigation of xenogeneic aortic biosheets in serving as tracheal substitute in a dog model, which proposes that decellularized biosheets of bovine carotid may be a potential material for bioartificial tracheal graft.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2020.1790273","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2020.1790273","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Tracheal reconstruction after extensive resection remains a challenge in thoracic surgery. Aortic allograft has been proposed to be a potential tracheal substitute. However, clinically, its application is limited for the shortage of autologous aortic segment. Whether xenogeneic aortic biosheets can be used as tracheal substitutes remains unknown. In the present study, we investigated the possibility in dog model. The results show that all dogs were survived without airway symptoms at 6 months after tracheal reconstruction with gently decellularized bovine carotid arteries. In the interior of engrafted areas, grafted patch integrated tightly with the residual native tracheal tissues and tracheal defects in the lumen were repaired smoothly without obvious inflammation, granulation, anastomotic leakage, or stenosis. In addition, histological and scanning electron microscopy examination showed that grafted patches were covered with ciliated columnar epithelium similar to epithelium in native trachea, which indicated successfully re-epithelialization of decellularized bovine carotid arteries in dogs. These findings provide preclinical investigation of xenogeneic aortic biosheets in serving as tracheal substitute in a dog model, which proposes that decellularized biosheets of bovine carotid may be a potential material for bioartificial tracheal graft.

犬脱细胞主动脉异种移植气道重建的研究。
广泛切除后气管重建仍然是胸外科的一个挑战。异体主动脉移植被认为是一种潜在的气管替代物。但临床上由于缺乏自体主动脉段,其应用受到限制。异种主动脉生物片能否作为气管替代物尚不清楚。在本研究中,我们探讨了狗模型的可能性。结果显示,在用轻度脱细胞的牛颈动脉重建气管6个月后,所有犬均无气道症状存活。在移植区内部,移植膜片与原有气管残留组织紧密结合,管腔内气管缺损修复顺利,无明显炎症、肉芽肿、吻合口漏、狭窄。此外,组织学和扫描电镜检查显示,移植斑块上覆盖着与天然气管上皮相似的纤毛柱状上皮,表明脱细胞的牛颈动脉在狗体内成功实现了再上皮化。这些发现提供了异种主动脉生物片作为狗模型气管替代物的临床前研究,这表明脱细胞的牛颈动脉生物片可能是生物人工气管移植的潜在材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organogenesis
Organogenesis BIOCHEMISTRY & MOLECULAR BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
4.10
自引率
4.30%
发文量
6
审稿时长
>12 weeks
期刊介绍: Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes. The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering. The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信