{"title":"聚合物集成羊膜膜敷料创面愈合效果的评价。","authors":"Bo Wang, Wuwei Li, Justin Harrison","doi":"10.1080/15476278.2020.1844507","DOIUrl":null,"url":null,"abstract":"ABSTRACT A film dressing is an easy and common wound management, which is flexible to cover many types of superficial injuries. In a recent study, we developed a scaffold from poly (1,8-octanediolco-citrate) incorporated decellularized amnion membrane (DAM-POC). The DAM-POC scaffold was biocompatible and could enhance soft and hard tissue regeneration when applied to repair the cleft palate in rat. The efficacy of the DAM-POC scaffold in oral repair had led us to hypothesize that it could be employed extensively in the medical field as a wound dressing. This study aimed to investigate the feasibility and efficacy of the DAM-POC scaffold as a film dressing in accelerating wound healing when applied in multiple tissue injuries. Our results demonstrated that both the DAM and DAM-POC scaffolds were biocompatible and anti-adhesive without causing severe foreign body reactions when covering wounds in abdominal wall, back muscle, tibia bone, and liver. In addition, the DAM-POC scaffold was superior to the DAM scaffold in reducing inflammation, preventing fibrosis, and regenerating tissues. In conclusion, the DAM-POC scaffold might potentially be adopted as a film dressing in a wide range of therapeutic applications and healing situations to protect the damaged tissues from the external environment and prevent infections.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"16 4","pages":"126-136"},"PeriodicalIF":1.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2020.1844507","citationCount":"6","resultStr":"{\"title\":\"An Evaluation of Wound Healing Efficacy of a Film Dressing Made from Polymer-integrated Amnion Membrane.\",\"authors\":\"Bo Wang, Wuwei Li, Justin Harrison\",\"doi\":\"10.1080/15476278.2020.1844507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A film dressing is an easy and common wound management, which is flexible to cover many types of superficial injuries. In a recent study, we developed a scaffold from poly (1,8-octanediolco-citrate) incorporated decellularized amnion membrane (DAM-POC). The DAM-POC scaffold was biocompatible and could enhance soft and hard tissue regeneration when applied to repair the cleft palate in rat. The efficacy of the DAM-POC scaffold in oral repair had led us to hypothesize that it could be employed extensively in the medical field as a wound dressing. This study aimed to investigate the feasibility and efficacy of the DAM-POC scaffold as a film dressing in accelerating wound healing when applied in multiple tissue injuries. Our results demonstrated that both the DAM and DAM-POC scaffolds were biocompatible and anti-adhesive without causing severe foreign body reactions when covering wounds in abdominal wall, back muscle, tibia bone, and liver. In addition, the DAM-POC scaffold was superior to the DAM scaffold in reducing inflammation, preventing fibrosis, and regenerating tissues. In conclusion, the DAM-POC scaffold might potentially be adopted as a film dressing in a wide range of therapeutic applications and healing situations to protect the damaged tissues from the external environment and prevent infections.\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"16 4\",\"pages\":\"126-136\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15476278.2020.1844507\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2020.1844507\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2020.1844507","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An Evaluation of Wound Healing Efficacy of a Film Dressing Made from Polymer-integrated Amnion Membrane.
ABSTRACT A film dressing is an easy and common wound management, which is flexible to cover many types of superficial injuries. In a recent study, we developed a scaffold from poly (1,8-octanediolco-citrate) incorporated decellularized amnion membrane (DAM-POC). The DAM-POC scaffold was biocompatible and could enhance soft and hard tissue regeneration when applied to repair the cleft palate in rat. The efficacy of the DAM-POC scaffold in oral repair had led us to hypothesize that it could be employed extensively in the medical field as a wound dressing. This study aimed to investigate the feasibility and efficacy of the DAM-POC scaffold as a film dressing in accelerating wound healing when applied in multiple tissue injuries. Our results demonstrated that both the DAM and DAM-POC scaffolds were biocompatible and anti-adhesive without causing severe foreign body reactions when covering wounds in abdominal wall, back muscle, tibia bone, and liver. In addition, the DAM-POC scaffold was superior to the DAM scaffold in reducing inflammation, preventing fibrosis, and regenerating tissues. In conclusion, the DAM-POC scaffold might potentially be adopted as a film dressing in a wide range of therapeutic applications and healing situations to protect the damaged tissues from the external environment and prevent infections.
期刊介绍:
Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes.
The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering.
The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.