Robert L Beckman, Elenora Cella, Taj Azarian, Olaya Rendueles, Renee M Fleeman
{"title":"Diverse polysaccharide production and biofilm formation abilities of clinical Klebsiella pneumoniae.","authors":"Robert L Beckman, Elenora Cella, Taj Azarian, Olaya Rendueles, Renee M Fleeman","doi":"10.1038/s41522-024-00629-y","DOIUrl":"10.1038/s41522-024-00629-y","url":null,"abstract":"<p><p>Klebsiella pneumoniae infections have become a growing threat for human health. The lack of understanding of the relationship between antibiotic resistance, mucoviscosity, and biofilm formation impedes our abilities to effectively predict K. pneumoniae infection outcomes. The Multidrug-Resistant Organism Repository and Surveillance Network offers a unique opportunity into the genetic and phenotypic variabilities in the K. pneumoniae isolates. To this end, we compared the genetic profiles of these isolates with the phenotypic biofilm formation, percent mucoviscosity, and growth rates. There was a significant phenotype-genotype correlation with decreased biofilm formation and an insertion sequence in the transcriptional activator of the type III fimbrial system. Interestingly, the most mucoid strains in the populations were lacking the genetic element regulating the mucoid phenotype and three of these isolates were able to form robust biofilms. The combination of phenotypic, genomic, and image analyses revealed an intricate relation between growth, mucoviscosity and specific virulence-associated genetic determinants.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"151"},"PeriodicalIF":7.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esther M C Vriend, Henrike Galenkamp, Hilde Herrema, Max Nieuwdorp, Bert-Jan H van den Born, Barbara J H Verhaar
{"title":"Machine learning analysis of sex and menopausal differences in the gut microbiome in the HELIUS study.","authors":"Esther M C Vriend, Henrike Galenkamp, Hilde Herrema, Max Nieuwdorp, Bert-Jan H van den Born, Barbara J H Verhaar","doi":"10.1038/s41522-024-00628-z","DOIUrl":"10.1038/s41522-024-00628-z","url":null,"abstract":"<p><p>Sex differences in the gut microbiome have been examined previously, but results are inconsistent, often due to small sample sizes. We investigated sex and menopausal differences in the gut microbiome in a large multi-ethnic population cohort study, including 5166 participants. Using machine learning models, we revealed modest associations between sex and menopausal status, and gut microbiota composition (AUC 0.61-0.63). After adjustments for age, cardiovascular risk factors, and diet, a part of the associations of the highest-ranked gut microbes with sex were attenuated, but most associations remained significant. In contrast, most associations with menopausal status were driven by age and lost significance after adjustment. Using pathway analyses on metagenomic data, we identified sex differences in vitamin B6 synthesis and stachyose degradation pathways. Since some of sex differences in gut microbiome composition and function could not be explained by covariates, we recommend sex stratification in future microbiome studies.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"152"},"PeriodicalIF":7.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayin Feng, Linlin Wang, Changchun Zhai, Lin Jiang, Yunfeng Yang, Xiaowei Huang, Jingyi Ru, Jian Song, Limei Zhang, Shiqiang Wan
{"title":"Root carbon inputs outweigh litter in shaping grassland soil microbiomes and ecosystem multifunctionality.","authors":"Jiayin Feng, Linlin Wang, Changchun Zhai, Lin Jiang, Yunfeng Yang, Xiaowei Huang, Jingyi Ru, Jian Song, Limei Zhang, Shiqiang Wan","doi":"10.1038/s41522-024-00616-3","DOIUrl":"10.1038/s41522-024-00616-3","url":null,"abstract":"<p><p>Global change has the potential to alter soil carbon (C) inputs from above- and below-ground sources, with subsequent influences on soil microbial communities and ecological functions. Using data from a 13-year field experiment in a semi-arid grassland, we investigated the effects of litter manipulations and plant removal on soil microbiomes and ecosystem multifunctionality (EMF). Litter addition did not affect soil microbial α-diversity whereas litter removal reduced bacterial and fungal α-diversity due to decreased C substrate supply and soil moisture. By contrast, plant removal led to larger declines in bacterial and fungal α-diversity, lower microbial network stability and complexity. EMF was enhanced by litter addition but largely reduced by plant removal, primarily attributed to the loss of fungal diversity. Our findings underscore the importance of C inputs in shaping soil microbiomes and highlight the dominant role of plant root-derived C inputs in maintaining ecological functions under global change scenarios.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"150"},"PeriodicalIF":7.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probiotics as an adjunctive therapy in periodontitis treatment-reality or illusion-a clinical perspective.","authors":"Lamyae Baddouri, Matthias Hannig","doi":"10.1038/s41522-024-00614-5","DOIUrl":"10.1038/s41522-024-00614-5","url":null,"abstract":"<p><p>Periodontitis, a prevalent oral health issue, involves various microorganisms and clinical effects. This review examines probiotics as adjunctive therapy for periodontitis by analyzing forty clinical studies. Findings showed mixed results due to differences in study design, probiotic types, and clinical parameters; however, probiotics improved outcomes in severe cases. Caution is advised when interpreting these results, as longer follow-up periods reveal variability and potential regression in effects.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"148"},"PeriodicalIF":7.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142837573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandar Pavic, Natasa Radakovic, Ivana Moric, Nada Stankovic, Dejan Opsenica, Lidija Senerovic
{"title":"Long-chain 4-aminoquinolines inhibit filamentation and increase efficacy of nystatin against Candida albicans infections in vivo.","authors":"Aleksandar Pavic, Natasa Radakovic, Ivana Moric, Nada Stankovic, Dejan Opsenica, Lidija Senerovic","doi":"10.1038/s41522-024-00608-3","DOIUrl":"10.1038/s41522-024-00608-3","url":null,"abstract":"<p><p>In exploring a growing demand for innovative approaches to tackle emerging and life threatening fungal diseases, we identified long-chain 4-aminoquinoline (4-AQ) derivatives as a new class of anti-virulence agents. For the first time, we demonstrated that 4-AQs effectively prevent filamentation of Candida albicans, a key virulence trait, under multiple triggering conditions. Selected 4-AQ derivatives inhibited filament formation in a zebrafish model of disseminated candidiasis at 1.56 µM, with no toxicity up to 50 µM. Combining nystatin with 4-AQs resulted in a 100% survival rate of infected embryos and complete eradication of C. albicans, compared to 65-75% survival with nystatin alone. The most potent 4-AQ derivatives also showed significant activity against C. albicans biofilms, with derivative 11 suppressing mixed C. albicans-Pseudomonas aeruginosa biofilms. This dual capability highlights the potential of 4-AQs as novel anti-virulence agents to enhance conventional antifungal therapies, marking a significant advance in treating complex fungal infections.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"146"},"PeriodicalIF":7.8,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyoluteorin-deficient Pseudomonas protegens improves cooperation with Bacillus velezensis, biofilm formation, co-colonizing, and reshapes rhizosphere microbiome.","authors":"Qian Zhao, Ruoyi Wang, Yan Song, Juan Lu, Bingjie Zhou, Fang Song, Lijuan Zhang, Qianqian Huang, Jing Gong, Jingjing Lei, Suomeng Dong, Qin Gu, Rainer Borriss, Xuewen Gao, Huijun Wu","doi":"10.1038/s41522-024-00627-0","DOIUrl":"10.1038/s41522-024-00627-0","url":null,"abstract":"<p><p>Plant-beneficial Pseudomonas and Bacillus have been extensively studied and applied in biocontrol of plant diseases. However, there is less known about their interaction within two-strain synthetic communities (SynCom). Our study revealed that Pseudomonas protegens Pf-5 inhibits the growth of several Bacillus species, including Bacillus velezensis. We established a two-strain combination of Pf-5 and DMW1 to elucidate the interaction. In this combination, pyoluteorin conferred the competitive advantage of Pf-5. Noteworthy, pyoluteorin-deficient Pf-5 cooperated with DMW1 in biofilm formation, production of metabolites, root colonization, tomato bacterial wilt disease control, as well as in cooperation with beneficial bacteria in tomato rhizosphere, such as Bacillus spp. RNA-seq analysis and RT-qPCR also proved the pyoluteorin-deficient Pf-5 mutant improved cell motility and metabolite production. This study suggests that the cooperative effect of Bacillus-Pseudomonas consortia depends on the balance of pyoluteorin. Our finding needs to be considered in developing efficient SynCom in sustainable agriculture.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"145"},"PeriodicalIF":7.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bifidobacterium animalis Probio-M8 improves sarcopenia physical performance by mitigating creatine restrictions imposed by microbial metabolites.","authors":"Zeng Zhang, Yajing Fang, Yangli He, Mohamed A Farag, Min Zeng, Yukai Sun, Siqi Peng, Shuaiming Jiang, Xian Zhang, Kaining Chen, Meng Xu, Zhe Han, Jiachao Zhang","doi":"10.1038/s41522-024-00618-1","DOIUrl":"10.1038/s41522-024-00618-1","url":null,"abstract":"<p><p>Sarcopenia is a major health challenge due to an aging population. Probiotics may improve muscle function through gut-muscle axis, but their efficacy and mechanisms in treating sarcopenia remain unclear. This study investigated the impact of Bifidobacterium animalis subsp. lactis Probio-M8 (Probio-M8) on old mice and sarcopenia patients. We analyzed 43 subjects, including gut microbiome, fecal metabolome, and serum metabolome, using a multi-omics approach to assess whether Probio-M8 can improve sarcopenia by modulating gut microbial metabolites. Probio-M8 significantly improved muscle function in aged mice and enhanced physical performance in sarcopenia patients. It reduced pathogenic gut species and increased beneficial metabolites such as indole-3-lactic acid, acetoacetic acid, and creatine. Mediating effect analyses revealed that Probio-M8 effectively reduced n-dodecanoyl-L-homoserine lactone level in gut concurrent with increased creatine circulation, to significantly enhance host physical properties. These findings provide new insights into probiotics as a potential treatment for sarcopenia by modulating gut microbiota metabolism.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"144"},"PeriodicalIF":7.8,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macarena Siri, Mónica Vázquez-Dávila, Carolina Sotelo Guzman, Cécile M Bidan
{"title":"Nutrient availability influences E. coli biofilm properties and the structure of purified curli amyloid fibers.","authors":"Macarena Siri, Mónica Vázquez-Dávila, Carolina Sotelo Guzman, Cécile M Bidan","doi":"10.1038/s41522-024-00619-0","DOIUrl":"10.1038/s41522-024-00619-0","url":null,"abstract":"<p><p>Bacterial biofilms are highly adaptable and resilient to challenges. Nutrient availability can induce changes in biofilm growth, architecture and mechanical properties. Their extracellular matrix plays an important role in achieving biofilm stability under different environmental conditions. Curli amyloid fibers are critical for the architecture and stiffness of E. coli biofilms, but how this major matrix component adapts to different environmental cues remains unclear. We investigated, for the first time, the effect of nutrient availability both on biofilm material properties and on the structure and properties of curli amyloid fibers extracted from similar biofilms. Our results show that biofilms grown on low nutrient substrates are stiffer, contain more curli fibers, and these fibers present higher β-sheet content and chemical stability. Our multiscale study sheds new light on the relationship between bacterial matrix molecular structure and biofilm macroscopic properties. This knowledge will benefit the development of both anti-biofilm strategies and biofilm-based materials.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"143"},"PeriodicalIF":7.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}