Jan Janssen, Edgar Makarov, Tilmann Hickel, Alexander V. Shapeev, Jörg Neugebauer
{"title":"Automated optimization and uncertainty quantification of convergence parameters in plane wave density functional theory calculations","authors":"Jan Janssen, Edgar Makarov, Tilmann Hickel, Alexander V. Shapeev, Jörg Neugebauer","doi":"10.1038/s41524-024-01388-2","DOIUrl":"https://doi.org/10.1038/s41524-024-01388-2","url":null,"abstract":"<p>First principles approaches have revolutionized our ability in using computers to predict, explore, and design materials. A major advantage commonly associated with these approaches is that they are fully parameter-free. However, numerically solving the underlying equations requires to choose a set of convergence parameters. With the advent of high-throughput calculations, it becomes exceedingly important to achieve a truly parameter-free approach. Utilizing uncertainty quantification (UQ) and linear decomposition we derive a numerically highly efficient representation of the statistical and systematic error in the multidimensional space of the convergence parameters for plane wave density functional theory (DFT) calculations. Based on this formalism we implement a fully automated approach that requires as input the target precision rather than convergence parameters. The performance and robustness of the approach are shown by applying it to a large set of elements crystallizing in a cubic fcc lattice.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding chiral charge-density wave by frozen chiral phonon","authors":"Shuai Zhang, Kaifa Luo, Tiantian Zhang","doi":"10.1038/s41524-024-01440-1","DOIUrl":"https://doi.org/10.1038/s41524-024-01440-1","url":null,"abstract":"<p>Charge density wave (CDW) is discovered within a wide interval in solids, however, its microscopic nature is still not transparent in most realistic materials, and the recently studied chiral ones with chiral structural distortion remain unclear. In this paper, we try to understand the driving forces of chiral CDW transition by chiral phonons from the electron-phonon coupling scenario. We use the prototypal monolayer 1T-TiSe<sub>2</sub> as a case study to unveil the absence of chirality in the CDW transition and propose a general approach, i.e., symmetry-breaking stimuli, to engineer the chirality of CDW in experiments. Inelastic scattering patterns are also studied as a benchmark of chiral CDW (CCDW, which breaks the mirror/inversion symmetry in 2D/3D systems). We notice that the anisotropy changing of Bragg peak profiles, which is contributed by the soft chiral phonons, can show a remarkable signature for CCDW. Our findings pave a path to understanding the CCDW from the chiral phonon perspective, especially in van der Waals materials, and provides a powerful way to manipulate the chirality of CDW.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"6 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large language models design sequence-defined macromolecules via evolutionary optimization","authors":"Wesley F. Reinhart, Antonia Statt","doi":"10.1038/s41524-024-01449-6","DOIUrl":"https://doi.org/10.1038/s41524-024-01449-6","url":null,"abstract":"<p>We demonstrate the ability of a large language model to perform evolutionary optimization for materials discovery. Anthropic’s Claude 3.5 model outperforms an active learning scheme with handcrafted surrogate models and an evolutionary algorithm in selecting monomer sequences to produce targeted morphologies in macromolecular self-assembly. Utilizing pre-trained language models can potentially reduce the need for hyperparameter tuning while offering new capabilities such as self-reflection. The model performs this task effectively with or without context about the task itself, but domain-specific context sometimes results in faster convergence to good solutions. Furthermore, when this context is withheld, the model infers an approximate notion of the task (e.g., calling it a protein folding problem). This work provides evidence of Claude 3.5’s ability to act as an evolutionary optimizer, a recently discovered emergent behavior of large language models, and demonstrates a practical use case in the study and design of soft materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"250 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarath Menon, Yury Lysogorskiy, Alexander L. M. Knoll, Niklas Leimeroth, Marvin Poul, Minaam Qamar, Jan Janssen, Matous Mrovec, Jochen Rohrer, Karsten Albe, Jörg Behler, Ralf Drautz, Jörg Neugebauer
{"title":"From electrons to phase diagrams with machine learning potentials using pyiron based automated workflows","authors":"Sarath Menon, Yury Lysogorskiy, Alexander L. M. Knoll, Niklas Leimeroth, Marvin Poul, Minaam Qamar, Jan Janssen, Matous Mrovec, Jochen Rohrer, Karsten Albe, Jörg Behler, Ralf Drautz, Jörg Neugebauer","doi":"10.1038/s41524-024-01441-0","DOIUrl":"https://doi.org/10.1038/s41524-024-01441-0","url":null,"abstract":"<p>We present a comprehensive and user-friendly framework built upon the <span>pyiron</span> integrated development environment (IDE), enabling researchers to perform the entire Machine Learning Potential (MLP) development cycle consisting of (i) creating systematic DFT databases, (ii) fitting the Density Functional Theory (DFT) data to empirical potentials or MLPs, and (iii) validating the potentials in a largely automatic approach. The power and performance of this framework are demonstrated for three conceptually very different classes of interatomic potentials: an empirical potential (embedded atom method - EAM), neural networks (high-dimensional neural network potentials - HDNNP) and expansions in basis sets (atomic cluster expansion - ACE). As an advanced example for validation and application, we show the computation of a binary composition-temperature phase diagram for Al-Li, a technologically important lightweight alloy system with applications in the aerospace industry.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"248 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew G. Boebinger, Ayana Ghosh, Kevin M. Roccapriore, Sudhajit Misra, Kai Xiao, Stephen Jesse, Maxim Ziatdinov, Sergei V. Kalinin, Raymond R. Unocic
{"title":"Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy","authors":"Matthew G. Boebinger, Ayana Ghosh, Kevin M. Roccapriore, Sudhajit Misra, Kai Xiao, Stephen Jesse, Maxim Ziatdinov, Sergei V. Kalinin, Raymond R. Unocic","doi":"10.1038/s41524-024-01448-7","DOIUrl":"https://doi.org/10.1038/s41524-024-01448-7","url":null,"abstract":"<p>Directed atomic fabrication using an aberration-corrected scanning transmission electron microscope (STEM) opens new pathways for atomic engineering of functional materials. In this approach, the electron beam is used to actively alter the atomic structure through electron beam induced irradiation processes. One of the impediments that has limited widespread use thus far has been the ability to understand the fundamental mechanisms of atomic transformation pathways at high spatiotemporal resolution. Here, we develop a workflow for obtaining and analyzing high-speed spiral scan STEM data, up to 100 fps, to track the atomic fabrication process during nanopore milling in monolayer MoS<sub>2</sub>. An automated feedback-controlled electron beam positioning system combined with deep convolution neural network (DCNN) was used to decipher fast but low signal-to-noise datasets and classify time-resolved atom positions and nature of their evolving atomic defect configurations. Through this automated decoding, the initial atomic disordering and reordering processes leading to nanopore formation was able to be studied across various timescales. Using these experimental workflows a greater degree of speed and information can be extracted from small datasets without compromising spatial resolution. This approach can be adapted to other 2D materials systems to gain further insights into the defect formation necessary to inform future automated fabrication techniques utilizing the STEM electron beam.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"43 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuoying Zhu, Junsoo Park, Hrushikesh Sahasrabuddhe, Alex M. Ganose, Rees Chang, John W. Lawson, Anubhav Jain
{"title":"A high-throughput framework for lattice dynamics","authors":"Zhuoying Zhu, Junsoo Park, Hrushikesh Sahasrabuddhe, Alex M. Ganose, Rees Chang, John W. Lawson, Anubhav Jain","doi":"10.1038/s41524-024-01437-w","DOIUrl":"https://doi.org/10.1038/s41524-024-01437-w","url":null,"abstract":"<p>We develop an automated high-throughput workflow for calculating lattice dynamical properties from first principles including those dictated by anharmonicity. The pipeline automatically computes interatomic force constants (IFCs) up to 4th order from perturbed training supercells, and uses the IFCs to calculate lattice thermal conductivity, coefficient of thermal expansion, and vibrational free energy and entropy. It performs phonon renormalization for dynamically unstable compounds to obtain real effective phonon spectra at finite temperatures and calculates the associated free energy corrections. The methods and parameters are chosen to balance computational efficiency and result accuracy, assessed through convergence testing and comparisons with experimental measurements. Deployment of this workflow at a large scale would facilitate materials discovery efforts toward functionalities including thermoelectrics, contact materials, ferroelectrics, aerospace components, as well as general phase diagram construction.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"246 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facilitated the discovery of new γ/γ′ Co-based superalloys by combining first-principles and machine learning","authors":"ZhaoJing Han, ShengBao Xia, ZeYu Chen, Yihui Guo, ZhaoXuan Li, Qinglian Huang, Xing-Jun Liu, Wei-Wei Xu","doi":"10.1038/s41524-024-01455-8","DOIUrl":"https://doi.org/10.1038/s41524-024-01455-8","url":null,"abstract":"<p>Superalloys are indispensable materials for the fabrication of high-temperature components in aircraft engines. The discovery of a novel class of γ/γ′ Co-Al-W alloys has ignited a surge of interest in Co-based superalloys, with the aspiration to transcend the inherent constraints of their Ni-based counterparts. However, the conventional methodologies utilized in the design and advancement of new γ/γ′ Co-based superalloys are frequently characterized by their laborious and resource-intensive nature. In this study, we employed a coupled Density Functional Theory (DFT) and machine learning (ML) approach to predict and analyze the stability of the crucial γ′ phase, which is instrumental in expediting the discovery of γ/γ′ Co-based alloys. A dataset comprised of thousands of reliable formation (<i>H</i><sub>f</sub>) and decomposition (<i>H</i><sub>d</sub>) energies was obtained through high-throughput DFT calculations. Through regression model selection and feature engineering, our trained Random Forest (RF) model achieved prediction accuracies of 98.07% for <i>H</i><sub>f</sub> and 97.05% for <i>H</i><sub>d</sub>. Utilizing the well-trained RF model, we predicted the energies of over 150,000 ternary and quaternary γ′ phases within the Co-Ni-Fe-Cr-Al-W-Ti-Ta-V-Mo-Nb system. The energy analyses revealed that the presence of Ni, Nb, Ta, Ti, and V significantly reduced the <i>H</i><sub>f</sub> and the <i>H</i><sub>d</sub> of γ′, while Mo and W deteriorate the stability by increasing both energy values. Interestingly, although Al reduces the <i>H</i><sub>f</sub>, it increases <i>H</i><sub>d</sub>, thereby adversely affecting the stability of γ′. Applying domain-specific screening based on our knowledge, we identified 1049 out of >150,000 compositions likely to form stable γ′ phases, predominantly distributed across 11 Al-containing systems and 25 Al-free systems. Combining the analysis of CALPHAD method, we experimentally synthesized two new Co-based alloys with γ/γ′ dual-phase microstructures, corroborating the reliability of our theoretical prediction model.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"20 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance","authors":"Tianchuang Gao, Jianbao Gao, Shenglan Yang, Lijun Zhang","doi":"10.1038/s41524-024-01457-6","DOIUrl":"https://doi.org/10.1038/s41524-024-01457-6","url":null,"abstract":"<p>Lightweight refractory high-entropy alloys (LW-RHEAs) hold significant potential in the fields of aviation, aerospace, and nuclear energy due to their low density, high strength, high hardness, and corrosion resistance. However, the enormous composition space has severely hindered the development of novel LW-RHEAs with excellent comprehensive performance. In this paper, an machine learning (ML)-based alloy design strategy combined with a multi-objective optimization method was proposed and applied for a rational design of Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs. The quantitative relation of “composition-structure-property” was first established by ML modeling. Then, feature analysis reveals that Cr content greater than 12 at.% is a key criterion for alloys with high corrosion resistance. The phase structure, density, melting point, hardness and corrosion resistance of the alloys were screened layer by layer, and finally, three LW-RHEAs with superb hard and corrosion resistance were successfully designed. Key experimental validation indicates that three target alloys have densities around 6.5 g/cm<sup>3</sup>, and all alloys are disordered bcc_A2 single-phase with the highest hardness of 593 HV and the largest pitting potential of 2.5 V<sub>SCE</sub>, which far exceeds all the literature reports. The successful demonstration in this paper clearly demonstrates that the present design strategy driven by the ML technique should be generally applicable to other RHEA systems.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"6 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo
{"title":"Quantum-inspired genetic algorithm for designing planar multilayer photonic structure","authors":"Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo","doi":"10.1038/s41524-024-01438-9","DOIUrl":"https://doi.org/10.1038/s41524-024-01438-9","url":null,"abstract":"<p>Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the Quantum-inspired Genetic Algorithm (QGA) with machine learning surrogate model regression. Using Random Forests as the surrogate model circumvents the time-consuming physical modeling or experiments, thereby improving the optimization efficiency. QGA, a genetic algorithm embedded with quantum mechanics, combines the advantages of quantum computing and genetic algorithms, enabling faster and more robust convergence to the optimum. Using the design of planar multilayer photonic structures for transparent radiative cooling as a testbed, we show superiority of our algorithm over the classical genetic algorithm (CGA). Additionally, we show the precision advantage of the Random Forest (RF) model as a flexible surrogate model, which relaxes the constraints on the type of surrogate model that can be used in other quantum computing optimization algorithms (e.g., quantum annealing needs Ising model as a surrogate).</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"162 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kazuma Ito, Tatsuya Yokoi, Katsutoshi Hyodo, Hideki Mori
{"title":"Machine learning interatomic potential with DFT accuracy for general grain boundaries in Œ±-Fe","authors":"Kazuma Ito, Tatsuya Yokoi, Katsutoshi Hyodo, Hideki Mori","doi":"10.1038/s41524-024-01451-y","DOIUrl":"https://doi.org/10.1038/s41524-024-01451-y","url":null,"abstract":"<p>To advance the development of high-strength polycrystalline metallic materials towards achieving carbon neutrality, it is essential to design materials in which the atomic level control of general grain boundaries (GGBs), which govern the material properties, is achieved. However, owing to the complex and diverse structures of GGBs, there have been no reports on interatomic potentials capable of reproducing them. This accuracy is essential for conducting molecular dynamics analyses to derive material design guidelines. In this study, we constructed a machine learning interatomic potential (MLIP) with density functional theory (DFT) accuracy to model the energy, atomic structure, and dynamics of arbitrary grain boundaries (GBs), including GGBs, in Œ±-Fe. Specifically, we employed a training dataset comprising diverse atomic structures generated based on crystal space groups. The GGB accuracy was evaluated by directly comparing with DFT calculations performed on cells cut near GBs from nano-polycrystals, and extrapolation grades of the local atomic environment based on active learning methods for the entire nano-polycrystal. Furthermore, we analyzed the GB energy and atomic structure in Œ±-Fe polycrystals through large-scale molecular dynamics analysis using the constructed MLIP. The average GB energy of Œ±-Fe polycrystals calculated by the constructed MLIP is 1.57‚ÄâJ/m<sup>2</sup>, exhibiting good agreement with experimental predictions. Our findings demonstrate the methodology for constructing an MLIP capable of representing GGBs with high accuracy, thereby paving the way for materials design based on computational materials science for polycrystalline materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"232 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}