Hamed Taghavian, Viktor Vanoppen, Erik Berg, Peter Broqvist, Jens Sjölund
{"title":"通过机器学习引导相场模拟导航金属离子电池的化学设计空间","authors":"Hamed Taghavian, Viktor Vanoppen, Erik Berg, Peter Broqvist, Jens Sjölund","doi":"10.1038/s41524-025-01735-x","DOIUrl":null,"url":null,"abstract":"<p>Metal anodes provide the highest energy density in batteries. However, they still suffer from electrode/electrolyte interface side reactions and dendrite growth, especially under fast-charging conditions. In this paper, we consider a phase-field model of electrodeposition in metal-anode batteries and provide a scalable, versatile framework for optimizing its chemical parameters. Our approach is based on Bayesian optimization and explores the parameter space with a high sample efficiency and a low computation complexity. We use this framework to find the optimal cell for suppressing dendrite growth and accelerating charging speed under constant voltage. We identify interfacial mobility as a key parameter, which should be maximized to inhibit dendrites without compromising the charging speed. The results are verified using extended simulations of dendrite evolution in charging half cells with lithium-metal anodes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"48 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating chemical design spaces for metal-ion batteries via machine-learning-guided phase-field simulations\",\"authors\":\"Hamed Taghavian, Viktor Vanoppen, Erik Berg, Peter Broqvist, Jens Sjölund\",\"doi\":\"10.1038/s41524-025-01735-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal anodes provide the highest energy density in batteries. However, they still suffer from electrode/electrolyte interface side reactions and dendrite growth, especially under fast-charging conditions. In this paper, we consider a phase-field model of electrodeposition in metal-anode batteries and provide a scalable, versatile framework for optimizing its chemical parameters. Our approach is based on Bayesian optimization and explores the parameter space with a high sample efficiency and a low computation complexity. We use this framework to find the optimal cell for suppressing dendrite growth and accelerating charging speed under constant voltage. We identify interfacial mobility as a key parameter, which should be maximized to inhibit dendrites without compromising the charging speed. The results are verified using extended simulations of dendrite evolution in charging half cells with lithium-metal anodes.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01735-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01735-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Navigating chemical design spaces for metal-ion batteries via machine-learning-guided phase-field simulations
Metal anodes provide the highest energy density in batteries. However, they still suffer from electrode/electrolyte interface side reactions and dendrite growth, especially under fast-charging conditions. In this paper, we consider a phase-field model of electrodeposition in metal-anode batteries and provide a scalable, versatile framework for optimizing its chemical parameters. Our approach is based on Bayesian optimization and explores the parameter space with a high sample efficiency and a low computation complexity. We use this framework to find the optimal cell for suppressing dendrite growth and accelerating charging speed under constant voltage. We identify interfacial mobility as a key parameter, which should be maximized to inhibit dendrites without compromising the charging speed. The results are verified using extended simulations of dendrite evolution in charging half cells with lithium-metal anodes.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.