通过机器学习引导相场模拟导航金属离子电池的化学设计空间

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hamed Taghavian, Viktor Vanoppen, Erik Berg, Peter Broqvist, Jens Sjölund
{"title":"通过机器学习引导相场模拟导航金属离子电池的化学设计空间","authors":"Hamed Taghavian, Viktor Vanoppen, Erik Berg, Peter Broqvist, Jens Sjölund","doi":"10.1038/s41524-025-01735-x","DOIUrl":null,"url":null,"abstract":"<p>Metal anodes provide the highest energy density in batteries. However, they still suffer from electrode/electrolyte interface side reactions and dendrite growth, especially under fast-charging conditions. In this paper, we consider a phase-field model of electrodeposition in metal-anode batteries and provide a scalable, versatile framework for optimizing its chemical parameters. Our approach is based on Bayesian optimization and explores the parameter space with a high sample efficiency and a low computation complexity. We use this framework to find the optimal cell for suppressing dendrite growth and accelerating charging speed under constant voltage. We identify interfacial mobility as a key parameter, which should be maximized to inhibit dendrites without compromising the charging speed. The results are verified using extended simulations of dendrite evolution in charging half cells with lithium-metal anodes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"48 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating chemical design spaces for metal-ion batteries via machine-learning-guided phase-field simulations\",\"authors\":\"Hamed Taghavian, Viktor Vanoppen, Erik Berg, Peter Broqvist, Jens Sjölund\",\"doi\":\"10.1038/s41524-025-01735-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal anodes provide the highest energy density in batteries. However, they still suffer from electrode/electrolyte interface side reactions and dendrite growth, especially under fast-charging conditions. In this paper, we consider a phase-field model of electrodeposition in metal-anode batteries and provide a scalable, versatile framework for optimizing its chemical parameters. Our approach is based on Bayesian optimization and explores the parameter space with a high sample efficiency and a low computation complexity. We use this framework to find the optimal cell for suppressing dendrite growth and accelerating charging speed under constant voltage. We identify interfacial mobility as a key parameter, which should be maximized to inhibit dendrites without compromising the charging speed. The results are verified using extended simulations of dendrite evolution in charging half cells with lithium-metal anodes.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01735-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01735-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属阳极在电池中提供最高的能量密度。然而,它们仍然受到电极/电解质界面副反应和枝晶生长的影响,特别是在快速充电条件下。在本文中,我们考虑了金属阳极电池中电沉积的相场模型,并提供了一个可扩展的,通用的框架来优化其化学参数。我们的方法基于贝叶斯优化,以高样本效率和低计算复杂度探索参数空间。我们使用这个框架来寻找在恒电压下抑制枝晶生长和加速充电速度的最佳电池。我们认为界面迁移率是一个关键参数,在不影响充电速度的情况下,应该最大化界面迁移率以抑制枝晶。通过扩展模拟锂金属阳极充电半电池的枝晶演化,验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Navigating chemical design spaces for metal-ion batteries via machine-learning-guided phase-field simulations

Navigating chemical design spaces for metal-ion batteries via machine-learning-guided phase-field simulations

Metal anodes provide the highest energy density in batteries. However, they still suffer from electrode/electrolyte interface side reactions and dendrite growth, especially under fast-charging conditions. In this paper, we consider a phase-field model of electrodeposition in metal-anode batteries and provide a scalable, versatile framework for optimizing its chemical parameters. Our approach is based on Bayesian optimization and explores the parameter space with a high sample efficiency and a low computation complexity. We use this framework to find the optimal cell for suppressing dendrite growth and accelerating charging speed under constant voltage. We identify interfacial mobility as a key parameter, which should be maximized to inhibit dendrites without compromising the charging speed. The results are verified using extended simulations of dendrite evolution in charging half cells with lithium-metal anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信