Refining coarse-grained molecular topologies: a Bayesian optimization approach

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Pranoy Ray, Adam P. Generale, Nikhith Vankireddy, Yuichiro Asoma, Masataka Nakauchi, Haein Lee, Katsuhisa Yoshida, Yoshishige Okuno, Surya R. Kalidindi
{"title":"Refining coarse-grained molecular topologies: a Bayesian optimization approach","authors":"Pranoy Ray, Adam P. Generale, Nikhith Vankireddy, Yuichiro Asoma, Masataka Nakauchi, Haein Lee, Katsuhisa Yoshida, Yoshishige Okuno, Surya R. Kalidindi","doi":"10.1038/s41524-025-01729-9","DOIUrl":null,"url":null,"abstract":"<p>Molecular Dynamics (MD) simulations are vital for predicting the physical and chemical properties of molecular systems across various ensembles. While All-Atom (AA) MD provides high accuracy, its computational cost has spurred the development of Coarse-Grained MD (CGMD), which simplifies molecular structures into representative beads to reduce expense but sacrifice precision. CGMD methods like Martini3, calibrated against experimental data, generalize well across molecular classes but often fail to meet the accuracy demands of domain-specific applications. This work introduces a Bayesian Optimization-based approach to refine Martini3 topologies—specifically the bonded interaction parameters within a given coarse-grained mapping—for specialized applications, ensuring accuracy and efficiency. The resulting optimized CG potential accommodates any degree of polymerization, offering accuracy comparable to AA simulations while retaining the computational speed of CGMD. By bridging the gap between efficiency and accuracy, this method advances multiscale molecular simulations, enabling cost-effective molecular discovery for diverse scientific and technological fields.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01729-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular Dynamics (MD) simulations are vital for predicting the physical and chemical properties of molecular systems across various ensembles. While All-Atom (AA) MD provides high accuracy, its computational cost has spurred the development of Coarse-Grained MD (CGMD), which simplifies molecular structures into representative beads to reduce expense but sacrifice precision. CGMD methods like Martini3, calibrated against experimental data, generalize well across molecular classes but often fail to meet the accuracy demands of domain-specific applications. This work introduces a Bayesian Optimization-based approach to refine Martini3 topologies—specifically the bonded interaction parameters within a given coarse-grained mapping—for specialized applications, ensuring accuracy and efficiency. The resulting optimized CG potential accommodates any degree of polymerization, offering accuracy comparable to AA simulations while retaining the computational speed of CGMD. By bridging the gap between efficiency and accuracy, this method advances multiscale molecular simulations, enabling cost-effective molecular discovery for diverse scientific and technological fields.

Abstract Image

细化粗粒度分子拓扑:贝叶斯优化方法
分子动力学(MD)模拟对于预测不同系间分子系统的物理和化学性质至关重要。虽然全原子(AA) MD具有较高的精度,但其计算成本刺激了粗粒度MD (CGMD)的发展,粗粒度MD将分子结构简化为具有代表性的珠子,以降低成本,但牺牲了精度。像Martini3这样的CGMD方法,根据实验数据校准,可以很好地泛化分子类别,但往往不能满足特定领域应用的精度要求。这项工作引入了一种基于贝叶斯优化的方法来细化Martini3拓扑,特别是给定粗粒度映射中的粘合交互参数,用于专门的应用程序,确保准确性和效率。优化后的CG势可以适应任何程度的聚合,在保持CGMD计算速度的同时,提供与AA模拟相当的精度。通过弥合效率和准确性之间的差距,该方法推进了多尺度分子模拟,使各种科学和技术领域的分子发现具有成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信