SLM-MATRIX:一个多智能体轨迹推理和验证框架,用于增强材料数据提取中的语言模型

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xin Li, Zhixuan Huang, Shu Quan, Cheng Peng, Xiaoming Ma
{"title":"SLM-MATRIX:一个多智能体轨迹推理和验证框架,用于增强材料数据提取中的语言模型","authors":"Xin Li, Zhixuan Huang, Shu Quan, Cheng Peng, Xiaoming Ma","doi":"10.1038/s41524-025-01719-x","DOIUrl":null,"url":null,"abstract":"<p>Small Language Models offer an efficient alternative for structured information extraction. We present <b>SLM-MATRIX</b>, a multi-path collaborative reasoning and verification framework based on SLMs, designed to extract material names, numerical values, and physical units from materials science literature. The framework integrates three complementary reasoning paths: a multi-agent collaborative path, a generator–discriminator path, and a dual cross-verification path. SLM-MATRIX achieves an accuracy of 92.85% on the BulkModulus dataset and reaches 77.68% accuracy on the MatSynTriplet dataset, both outperforming conventional methods and single-path models. Moreover, experiments on general reasoning benchmarks such as GSM8K and SVAMP validate the framework’s strong generalization capability. Ablation studies evaluate the effects of agent number, Mixture-of-Agents (MoA) depth, and discriminator design on overall performance. Overall, SLM-MATRIX presents an effective approach for high-quality material information extraction in resource-constrained and offers new insights into structured scientific text understanding tasks.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLM-MATRIX: a multi-agent trajectory reasoning and verification framework for enhancing language models in materials data extraction\",\"authors\":\"Xin Li, Zhixuan Huang, Shu Quan, Cheng Peng, Xiaoming Ma\",\"doi\":\"10.1038/s41524-025-01719-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Small Language Models offer an efficient alternative for structured information extraction. We present <b>SLM-MATRIX</b>, a multi-path collaborative reasoning and verification framework based on SLMs, designed to extract material names, numerical values, and physical units from materials science literature. The framework integrates three complementary reasoning paths: a multi-agent collaborative path, a generator–discriminator path, and a dual cross-verification path. SLM-MATRIX achieves an accuracy of 92.85% on the BulkModulus dataset and reaches 77.68% accuracy on the MatSynTriplet dataset, both outperforming conventional methods and single-path models. Moreover, experiments on general reasoning benchmarks such as GSM8K and SVAMP validate the framework’s strong generalization capability. Ablation studies evaluate the effects of agent number, Mixture-of-Agents (MoA) depth, and discriminator design on overall performance. Overall, SLM-MATRIX presents an effective approach for high-quality material information extraction in resource-constrained and offers new insights into structured scientific text understanding tasks.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01719-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01719-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

小型语言模型为结构化信息提取提供了一种有效的替代方案。我们提出了基于slm的多路径协同推理和验证框架SLM-MATRIX,旨在从材料科学文献中提取材料名称、数值和物理单位。该框架集成了三条互补的推理路径:多智能体协作路径、生成器-鉴别器路径和双重交叉验证路径。SLM-MATRIX在BulkModulus数据集上的准确率为92.85%,在MatSynTriplet数据集上的准确率为77.68%,均优于传统方法和单路径模型。此外,在GSM8K和SVAMP等通用推理基准上的实验验证了该框架强大的泛化能力。消融研究评估了药物数量、药物混合(MoA)深度和鉴别器设计对整体性能的影响。总之,SLM-MATRIX为资源受限的高质量材料信息提取提供了有效的方法,并为结构化科学文本理解任务提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SLM-MATRIX: a multi-agent trajectory reasoning and verification framework for enhancing language models in materials data extraction

SLM-MATRIX: a multi-agent trajectory reasoning and verification framework for enhancing language models in materials data extraction

Small Language Models offer an efficient alternative for structured information extraction. We present SLM-MATRIX, a multi-path collaborative reasoning and verification framework based on SLMs, designed to extract material names, numerical values, and physical units from materials science literature. The framework integrates three complementary reasoning paths: a multi-agent collaborative path, a generator–discriminator path, and a dual cross-verification path. SLM-MATRIX achieves an accuracy of 92.85% on the BulkModulus dataset and reaches 77.68% accuracy on the MatSynTriplet dataset, both outperforming conventional methods and single-path models. Moreover, experiments on general reasoning benchmarks such as GSM8K and SVAMP validate the framework’s strong generalization capability. Ablation studies evaluate the effects of agent number, Mixture-of-Agents (MoA) depth, and discriminator design on overall performance. Overall, SLM-MATRIX presents an effective approach for high-quality material information extraction in resource-constrained and offers new insights into structured scientific text understanding tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信