{"title":"使用线性展开的密度泛函的设计原则","authors":"Ayoub Aouina, Matteo Gatti, Lucia Reining","doi":"10.1038/s41524-025-01712-4","DOIUrl":null,"url":null,"abstract":"<p>Density Functional Theory is one of the most widely used theoretical approaches for the calculation of properties of materials, but the systematic development of new functionals with controllable accuracy is an ongoing challenge. We propose to use perturbation theory around the homogeneous electron gas in a way that is optimized using physical insight, and to combine it with the recently developed connector approach in order to satisfy an exact limit. In this way, we develop an explicit non-local density functional for the Kohn-Sham exchange correlation potential. First results for the self-consistently calculated charge density and potential for three prototype materials demonstrate which accuracy can be reached for the charge density, confirm the systematicity of the approach, and suggest directions for further improvement.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design principles for density functionals using a linear expansion\",\"authors\":\"Ayoub Aouina, Matteo Gatti, Lucia Reining\",\"doi\":\"10.1038/s41524-025-01712-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Density Functional Theory is one of the most widely used theoretical approaches for the calculation of properties of materials, but the systematic development of new functionals with controllable accuracy is an ongoing challenge. We propose to use perturbation theory around the homogeneous electron gas in a way that is optimized using physical insight, and to combine it with the recently developed connector approach in order to satisfy an exact limit. In this way, we develop an explicit non-local density functional for the Kohn-Sham exchange correlation potential. First results for the self-consistently calculated charge density and potential for three prototype materials demonstrate which accuracy can be reached for the charge density, confirm the systematicity of the approach, and suggest directions for further improvement.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01712-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01712-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design principles for density functionals using a linear expansion
Density Functional Theory is one of the most widely used theoretical approaches for the calculation of properties of materials, but the systematic development of new functionals with controllable accuracy is an ongoing challenge. We propose to use perturbation theory around the homogeneous electron gas in a way that is optimized using physical insight, and to combine it with the recently developed connector approach in order to satisfy an exact limit. In this way, we develop an explicit non-local density functional for the Kohn-Sham exchange correlation potential. First results for the self-consistently calculated charge density and potential for three prototype materials demonstrate which accuracy can be reached for the charge density, confirm the systematicity of the approach, and suggest directions for further improvement.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.