{"title":"跨模态材料嵌入损失在异质材料描述符之间传递知识","authors":"Gyoung S. Na","doi":"10.1038/s41524-025-01723-1","DOIUrl":null,"url":null,"abstract":"<p>Despite the remarkable successes of transfer learning in materials science, the practicality of existing transfer learning methods are still limited in real-world applications of materials science because they essentially assume the same material descriptors on source and target materials datasets. In other words, existing transfer learning methods cannot utilize the knowledge extracted from calculated crystal structures when analyzing experimental observations of real-world chemical experiments. We propose a transfer learning criterion, called <i>cross-modality material embedding loss</i> (CroMEL), to build a source feature extractor that can transfer knowledge extracted from calculated crystal structures to prediction models in target applications where only simple chemical compositions are accessible. The prediction models based on transfer learning with CroMEL showed state-of-the-art prediction accuracy on 14 experimental materials datasets in various chemical applications. In particular, the prediction models with CroMEL achieved <i>R</i><sup>2</sup>-scores greater than 0.95 in predicting the experimentally measured formation enthalpies and band gaps of the experimentally synthesized materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"7 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-modality material embedding loss for transferring knowledge between heterogeneous material descriptors\",\"authors\":\"Gyoung S. Na\",\"doi\":\"10.1038/s41524-025-01723-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the remarkable successes of transfer learning in materials science, the practicality of existing transfer learning methods are still limited in real-world applications of materials science because they essentially assume the same material descriptors on source and target materials datasets. In other words, existing transfer learning methods cannot utilize the knowledge extracted from calculated crystal structures when analyzing experimental observations of real-world chemical experiments. We propose a transfer learning criterion, called <i>cross-modality material embedding loss</i> (CroMEL), to build a source feature extractor that can transfer knowledge extracted from calculated crystal structures to prediction models in target applications where only simple chemical compositions are accessible. The prediction models based on transfer learning with CroMEL showed state-of-the-art prediction accuracy on 14 experimental materials datasets in various chemical applications. In particular, the prediction models with CroMEL achieved <i>R</i><sup>2</sup>-scores greater than 0.95 in predicting the experimentally measured formation enthalpies and band gaps of the experimentally synthesized materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01723-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01723-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cross-modality material embedding loss for transferring knowledge between heterogeneous material descriptors
Despite the remarkable successes of transfer learning in materials science, the practicality of existing transfer learning methods are still limited in real-world applications of materials science because they essentially assume the same material descriptors on source and target materials datasets. In other words, existing transfer learning methods cannot utilize the knowledge extracted from calculated crystal structures when analyzing experimental observations of real-world chemical experiments. We propose a transfer learning criterion, called cross-modality material embedding loss (CroMEL), to build a source feature extractor that can transfer knowledge extracted from calculated crystal structures to prediction models in target applications where only simple chemical compositions are accessible. The prediction models based on transfer learning with CroMEL showed state-of-the-art prediction accuracy on 14 experimental materials datasets in various chemical applications. In particular, the prediction models with CroMEL achieved R2-scores greater than 0.95 in predicting the experimentally measured formation enthalpies and band gaps of the experimentally synthesized materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.