Srinivasa Reddy Tamalampudi, Ghada Dushaq, Solomon M. Serunjogi, Nitul S. Rajput, Mahmoud S. Rasras
{"title":"Simultaneous optical power insensitivity and non-volatile wavelength trimming using 2D In4/3P2Se6 integration in silicon photonics","authors":"Srinivasa Reddy Tamalampudi, Ghada Dushaq, Solomon M. Serunjogi, Nitul S. Rajput, Mahmoud S. Rasras","doi":"10.1038/s41699-024-00481-w","DOIUrl":"10.1038/s41699-024-00481-w","url":null,"abstract":"In integrated photonic circuits, microring resonators are essential building blocks but are susceptible to phase errors due to fabrication imperfections and optical power fluctuations. Conventional active phase tuning methods are power-intensive and challenging to integrate into densely packed photonic chips. This study proposes a solution by integrating a thin 2D layer of In4/3P2Se6 (InPSe) onto silicon microring resonators (Si-MRR). This approach mitigates sensitivity to laser power and achieves non-volatile wavelength trimming. Under bias voltage, the device exhibits electro-optic behavior, offering a non-volatile phase trimming rate of −2.62 pm/V to −4.62 pm/V, corresponding to InPSe thicknesses of 45 nm to 120 nm. Low optical losses of 0.0091 to 0.0361 dB/μm were also measured, corresponding to thicknesses of 30 nm to 120 nm. The devices demonstrate stable in-situ resonance wavelength stabilization and bidirectional trimming, ensuring cyclic stability for non-volatile phase control. This advancement enhances the performance of silicon photonics across diverse applications, facilitating high-capacity, high-power operation in compact designs.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00481-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Sarafraz, Hanqing Liu, Katarina Cvetanović, Marko Spasenović, Sten Vollebregt, Tomás Manzaneque Garcia, Peter G. Steeneken, Farbod Alijani, Gerard J. Verbiest
{"title":"Quantifying stress distribution in ultra-large graphene drums through mode shape imaging","authors":"Ali Sarafraz, Hanqing Liu, Katarina Cvetanović, Marko Spasenović, Sten Vollebregt, Tomás Manzaneque Garcia, Peter G. Steeneken, Farbod Alijani, Gerard J. Verbiest","doi":"10.1038/s41699-024-00485-6","DOIUrl":"10.1038/s41699-024-00485-6","url":null,"abstract":"Suspended drums made of 2D materials hold potential for sensing applications. However, the industrialization of these applications is hindered by significant device-to-device variations presumably caused by non-uniform stress distributions induced by the fabrication process. Here, we introduce a methodology to determine the stress distribution from their mechanical resonance frequencies and corresponding mode shapes as measured by a laser Doppler vibrometer (LDV). To avoid limitations posed by the optical resolution of the LDV, we leverage a manufacturing process to create ultra-large graphene drums with diameters of up to 1000 μm. We solve the inverse problem of a Föppl–von Kármán plate model by an iterative procedure to obtain the stress distribution within the drums from the experimental data. Our results show that the generally used uniform pre-tension assumption overestimates the pre-stress value, exceeding the averaged stress obtained by more than 47%. Moreover, it is found that the reconstructed stress distributions are bi-axial, which likely originates from the transfer process. The introduced methodology allows one to estimate the tension distribution in drum resonators from their mechanical response and thereby paves the way for linking the used fabrication processes to the resulting device performance.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00485-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luca Panarella, Ben Kaczer, Quentin Smets, Stanislav Tyaginov, Pablo Saraza Canflanca, Andrea Vici, Devin Verreck, Tom Schram, Dennis Lin, Theresia Knobloch, Tibor Grasser, César Lockhart de la Rosa, Gouri S. Kar, Valeri Afanas’ev
{"title":"Evidence of contact-induced variability in industrially-fabricated highly-scaled MoS2 FETs","authors":"Luca Panarella, Ben Kaczer, Quentin Smets, Stanislav Tyaginov, Pablo Saraza Canflanca, Andrea Vici, Devin Verreck, Tom Schram, Dennis Lin, Theresia Knobloch, Tibor Grasser, César Lockhart de la Rosa, Gouri S. Kar, Valeri Afanas’ev","doi":"10.1038/s41699-024-00482-9","DOIUrl":"10.1038/s41699-024-00482-9","url":null,"abstract":"Evidence of microscopic inhomogeneities of the side source/drain contacts in 300 mm wafer integrated MoS2 field-effect transistors is presented. In particular, the presence of a limited number of low Schottky barrier spots through which channel carriers are predominantly injected is demonstrated by the dramatic current changes induced by individual charge traps located near the source contact. Two distinct types of “contact-impacting traps” are identified. Type-1 trap is adjacent to the contact interface and exchanges carriers with the metal. Its impact is only observable when the adjacent contact is the reverse-biased FET source and limits the channel current. Type-2 trap is located in the AlOx gate oxide interlayer, near the source contact, and exchanges carriers with the channel. Its capture/emission time constants exhibit both a gate and drain bias dependence due to the high sensitivity of the contact regions to the applied lateral and vertical fields. Unlike typical channel-impacting oxide traps, both types of reported defects affect the Schottky barrier height and width rather than the threshold voltage and result in giant random telegraph noise (RTN). These observations indicate that the contact quality and geometry play a fundamental role in the ultimate scaling of 2D FETs.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00482-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relaxation effects in transition metal dichalcogenide bilayer heterostructures","authors":"Wei Li, Thomas Brumme, Thomas Heine","doi":"10.1038/s41699-024-00477-6","DOIUrl":"10.1038/s41699-024-00477-6","url":null,"abstract":"While moiré structures in twisted bilayer transition metal dichalcogenides (TMDCs) have been studied for over a decade, the importance of lattice relaxation effects was pointed out only in 2021 by DiAngelo and MacDonald1, who reported the emergence of a Dirac cone upon relaxation. TMDCs of group 6 transition metals MX2 (M = Mo, W, X = S, Se) share layered structures with pronounced interlayer interactions, exhibiting a direct band gap when exfoliated to a two-dimensional (2D) monolayer. As their heterolayers are incommensurable, moiré structures are present in the bilayers even if stacked without a twist angle. This study addresses the challenge of accurately modeling and understanding the structural relaxation in twisted TMDC heterobilayers. We show that the typical experimental situation of finite-size flakes stacked upon larger flakes can reliably be modeled by fully periodic commensurate models. Our findings reveal significant lattice reconstruction in TMDC heterobilayers, which strongly depend on the twist angle. We can categorize the results in two principal cases: at or near the untwisted configurations of 0° and 60°, domains with matching lattice constants form and the two constituting layers exhibit significant in-phase corrugation—their out-of-plane displacements are oriented towards the same direction in all local stackings—while at large twist angles—deviating from the 0° and 60°—the two layers show an out-of-phase corrugation. In particular, we reveal that the lattice reconstruction results from the competition between the strain energy cost and the van der Waals energy gain. Additionally, our systematical study highlights structural disparities between heterostructures composed of different or identical chalcogen atoms. Our research not only confirms the reliability of using periodic commensurate models to predict heterostructure behavior but also enriches the understanding of TMDC bilayer heterostructures.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00477-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strain-induced activation of chiral-phonon emission in monolayer WS2","authors":"Yiming Pan, Fabio Caruso","doi":"10.1038/s41699-024-00479-4","DOIUrl":"10.1038/s41699-024-00479-4","url":null,"abstract":"We report a theoretical investigation of the ultrafast dynamics of electrons and phonons in strained monolayer WS2 following photoexcitation. We show that strain substantially modifies the phase space for electron-phonon scattering, unlocking relaxation pathways that are unavailable in the pristine monolayer. In particular, strain triggers a transition between distinct dynamical regimes of the non-equilibrium lattice dynamics characterized by the emission of chiral phonons under high strain and linearly-polarized phonons under low strain. For valley-polarized electronic excitations, this mechanism can be exploited to selectively activate the emission of chiral phonons – phonons carrying a net angular momentum. Our simulations are based on state-of-the-art ab-initio methods and focus exclusively on realistic excitation and strain conditions that have already been achieved in recent experimental studies. Overall, strain emerges as a powerful tool for controlling chiral phonons emission and relaxation pathways in multivalley quantum materials.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00479-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricio Vergara, Guidobeth Sáez, Mario Castro, Sebastián Allende, Álvaro S. Núñez
{"title":"Emerging topological multiferroics from the 2D Rice-Mele model","authors":"Patricio Vergara, Guidobeth Sáez, Mario Castro, Sebastián Allende, Álvaro S. Núñez","doi":"10.1038/s41699-024-00478-5","DOIUrl":"10.1038/s41699-024-00478-5","url":null,"abstract":"We introduce a two-dimensional dimerized lattice model that reveals a remarkable feature: the emergence of a complex, non-trivial topological multiferroic phase marked by zero Berry curvature and a significant Berry connection that influences the model’s bulk topology. This model extends the one-dimensional Rice-Mele Hamiltonian model to explore polarization-dependent topological properties in a 2D Su-Schrieffer-Heeger lattice, providing a detailed framework for studying the impact of symmetry-breaking and spatially varying potentials on electronic and spin properties. The findings are particularly relevant for spintronics, offering a foundation for topologically robust and electrically controlled spin-conducting edge states, with implications for developing advanced spin-dependent transport devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00478-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theory of coherent phonons coupled to excitons","authors":"Enrico Perfetto, Kai Wu, Gianluca Stefanucci","doi":"10.1038/s41699-024-00474-9","DOIUrl":"10.1038/s41699-024-00474-9","url":null,"abstract":"The interaction of excitons with lattice vibrations underlies the scattering from bright to dark excitons as well as the coherent modulation of the exciton energy. Unlike the former mechanism, which involves phonons with finite momentum, the latter can be exclusively attributed to coherent phonons with zero momentum. We here lay down the microscopic theory of coherent phonons interacting with resonantly pumped bright excitons and provide the explicit expression of the corresponding coupling. The coupling notably resembles the exciton-phonon one, but with a crucial distinction: it contains the bare electron-phonon matrix elements rather than the screened ones. Our theory predicts that the exciton energy features a polaronic-like red-shift and monochromatic oscillations or beatings, depending on the number of coupled optical modes. Both the red-shift and the amplitude of the oscillations are proportional to the excitation density and to the square of the exciton-coherent-phonon coupling. We validate our analytical findings through comparisons with numerical simulations of time-resolved optical absorbance in resonantly pumped MoS2 monolayers.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00474-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seong-Yeon Lee, Soungmin Bae, Seonyeong Kim, Suyong Jung, Kenji Watanabe, Takashi Taniguchi, Hannes Raebiger, Ki-Ju Yee
{"title":"Full phonon dispersion along the stacking direction in nanoscale van der Waals materials by picosecond acoustics","authors":"Seong-Yeon Lee, Soungmin Bae, Seonyeong Kim, Suyong Jung, Kenji Watanabe, Takashi Taniguchi, Hannes Raebiger, Ki-Ju Yee","doi":"10.1038/s41699-024-00475-8","DOIUrl":"10.1038/s41699-024-00475-8","url":null,"abstract":"Phonon dispersion in crystals determines many important material properties, but its measurement usually requires large-scale facilities and is limited to bulk samples. Here, we demonstrate the measurement of full phonon dispersion along the stacking direction in nanoscale systems by using picosecond acoustics. A heterostructure sample was prepared consisting of layers of hexagonal boron nitride (hBN) sandwiching a thin layer of black phosphorus (BP), within which a strain pulse was generated by photoexcitation and observed with an optical probe in the BP layer. The strain pulse traverses to the few nanometer thick hBN layers, where it propagates to the edge and echoes back, like acoustic waves in Newton’s cradle. The echoes returning to the BP layer provide information on the frequency-dependent time-of-flight and group velocity dispersion of the sample system. The microscopic origin of the photoinduced strain pulse generation and its propagation is revealed from first principles. Phonon frequency combs observed in the Fourier transform spectrum confirm the strain wave round trips and demonstrate the feasibility of determining group velocity dispersion through photoacoustics.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00475-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purevlkham Myagmarsereejid, Selengesuren Suragtkhuu, Quang Thang Trinh, Tim Gould, Nam‐Trung Nguyen, Munkhjargal Bat-Erdene, Eric Campbell, Minh Tam Hoang, Wei-Hsun Chiu, Qin Li, Hongxia Wang, Yu Lin Zhong, Munkhbayar Batmunkh
{"title":"Large-area phosphorene for stable carbon-based perovskite solar cells","authors":"Purevlkham Myagmarsereejid, Selengesuren Suragtkhuu, Quang Thang Trinh, Tim Gould, Nam‐Trung Nguyen, Munkhjargal Bat-Erdene, Eric Campbell, Minh Tam Hoang, Wei-Hsun Chiu, Qin Li, Hongxia Wang, Yu Lin Zhong, Munkhbayar Batmunkh","doi":"10.1038/s41699-024-00476-7","DOIUrl":"10.1038/s41699-024-00476-7","url":null,"abstract":"Carbon-based perovskite solar cells (c-PSCs) have attracted increasing attention due to their numerous advantages including ease of fabrication, the potential of assembling flexible devices, low manufacturing costs as well as large-scale production. However, c-PSCs suffer from the limited hole extraction and high charge carrier recombination due to the inadequate interface contact between the carbon electrode and perovskite film. Herein, we report the fabrication of planar c-PSCs with high efficiency and excellent stability by employing electrochemically produced large-area phosphorene flakes as a hole-transporting layer (HTL). Large-area phosphorene shows well-aligned band energy levels with the perovskite, and thus led to the efficient hole extraction and the reduced hysteresis behaviour. Consequently, while exhibiting excellent stability under various harsh testing conditions, the devices with phosphorene HTL delivered a power conversion efficiency of over 15% with an open-circuit voltage of 1.082 V, which is the highest reported value for c-PSCs without traditional hole transporting materials to date.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.7,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00476-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tailored plasmon polariton landscape in graphene/boron nitride patterned heterostructures","authors":"Neven Golenić, Stefano de Gironcoli, Vito Despoja","doi":"10.1038/s41699-024-00469-6","DOIUrl":"10.1038/s41699-024-00469-6","url":null,"abstract":"Surface plasmon polaritons (SPPs), which are electromagnetic modes representing collective oscillations of charge density coupled with photons, have been extensively studied in graphene. This has provided a solid foundation for understanding SPPs in 2D materials. However, the emergence of wafer-transfer techniques has led to the creation of various quasi-2D van der Waals heterostructures, highlighting certain gaps in our understanding of their optical properties in relation to SPPs. To address this, we analyzed electromagnetic modes in graphene/hexagonal-boron-nitride/graphene heterostructures on a dielectric Al2O3 substrate using the full ab initio RPA optical conductivity tensor. Our theoretical model was validated through comparison with recent experiments measuring evanescent in-phase Dirac and out-of-phase acoustic SPP branches. Furthermore, we investigate how the number of plasmon branches and their dispersion are sensitive to variables such as layer count and charge doping. Notably, we demonstrate that patterning of the topmost graphene into nanoribbons provides efficient Umklapp scattering of the bottommost Dirac plasmon polariton (DP) into the radiative region, resulting in the conversion of the DP into a robust infrared-active plasmon. Additionally, we show that the optical activity of the DP and its hybridization with inherent plasmon resonances in graphene nanoribbons are highly sensitive to the doping of both the topmost and bottommost graphene layers. By elucidating these optical characteristics, we aspire to catalyze further advancements and create new opportunities for innovative applications in photonics and optoelectronic integration.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-13"},"PeriodicalIF":9.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00469-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}