{"title":"基于双层 LaI2 的磁隧道结是完美的自旋滤波装置","authors":"Shubham Tyagi, Avijeet Ray, Nirpendra Singh, Udo Schwingenschlögl","doi":"10.1038/s41699-024-00493-6","DOIUrl":null,"url":null,"abstract":"The discovery of van der Waals intrinsic magnets has expanded the possibilities of realizing spintronics devices. We investigate the transmission, tunneling magnetoresistance ratio, and spin injection efficiency of bilayer LaI2 using a combination of first-principles calculations and the non-equilibrium Green’s function method. Multilayer graphene electrodes are employed to build a magnetic tunnel junction with bilayer LaI2 as ferromagnetic barrier. The magnetic tunnel junction turns out to be a perfect spin filter device with an outstanding tunneling magnetoresistance ratio of 653% under a bias of 0.1 V and a still excellent performance in a wide bias range. In combination with the obtained high spin injection efficiency this opens up great potential from the application point of view.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00493-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic tunnel junction based on bilayer LaI2 as perfect spin filter device\",\"authors\":\"Shubham Tyagi, Avijeet Ray, Nirpendra Singh, Udo Schwingenschlögl\",\"doi\":\"10.1038/s41699-024-00493-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of van der Waals intrinsic magnets has expanded the possibilities of realizing spintronics devices. We investigate the transmission, tunneling magnetoresistance ratio, and spin injection efficiency of bilayer LaI2 using a combination of first-principles calculations and the non-equilibrium Green’s function method. Multilayer graphene electrodes are employed to build a magnetic tunnel junction with bilayer LaI2 as ferromagnetic barrier. The magnetic tunnel junction turns out to be a perfect spin filter device with an outstanding tunneling magnetoresistance ratio of 653% under a bias of 0.1 V and a still excellent performance in a wide bias range. In combination with the obtained high spin injection efficiency this opens up great potential from the application point of view.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-024-00493-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-024-00493-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00493-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
范德华本征磁体的发现拓展了实现自旋电子器件的可能性。我们结合第一原理计算和非平衡格林函数法,研究了双层 LaI2 的传输、隧道磁阻比和自旋注入效率。利用多层石墨烯电极构建了以双层 LaI2 为铁磁屏障的磁隧道结。该磁隧道结被证明是一个完美的自旋过滤器件,在 0.1 V 的偏压下具有 653% 的出色隧道磁阻比,并且在宽偏压范围内仍具有出色的性能。结合所获得的高自旋注入效率,从应用角度来看,它具有巨大的潜力。
Magnetic tunnel junction based on bilayer LaI2 as perfect spin filter device
The discovery of van der Waals intrinsic magnets has expanded the possibilities of realizing spintronics devices. We investigate the transmission, tunneling magnetoresistance ratio, and spin injection efficiency of bilayer LaI2 using a combination of first-principles calculations and the non-equilibrium Green’s function method. Multilayer graphene electrodes are employed to build a magnetic tunnel junction with bilayer LaI2 as ferromagnetic barrier. The magnetic tunnel junction turns out to be a perfect spin filter device with an outstanding tunneling magnetoresistance ratio of 653% under a bias of 0.1 V and a still excellent performance in a wide bias range. In combination with the obtained high spin injection efficiency this opens up great potential from the application point of view.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.