Matthew D. Watson, Swagata Acharya, James E. Nunn, Laxman Nagireddy, Dimitar Pashov, Malte Rösner, Mark van Schilfgaarde, Neil R. Wilson, Cephise Cacho
{"title":"Giant exchange splitting in the electronic structure of A-type 2D antiferromagnet CrSBr","authors":"Matthew D. Watson, Swagata Acharya, James E. Nunn, Laxman Nagireddy, Dimitar Pashov, Malte Rösner, Mark van Schilfgaarde, Neil R. Wilson, Cephise Cacho","doi":"10.1038/s41699-024-00492-7","DOIUrl":null,"url":null,"abstract":"We present the evolution of the electronic structure of CrSBr from its antiferromagnetic ground state to the paramagnetic phase above TN = 132 K, in both experiment and theory. Low-temperature angle-resolved photoemission spectroscopy (ARPES) results are obtained using a novel method to overcome sample charging issues, revealing quasi-2D valence bands in the ground state. The results are very well reproduced by our $${\\rm{QSG}}\\hat{{\\rm{W}}}$$ calculations, which further identify certain bands at the X points to be exchange-split pairs of states with mainly Br and S character. By tracing band positions as a function of temperature, we show the splitting disappears above TN. The energy splitting is interpreted as an effective exchange splitting in individual layers in which the Cr moments all align, within the so-called A-type antiferromagnetic arrangement. Our results lay firm foundations for the interpretation of the many other intriguing physical and optical properties of CrSBr.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00492-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00492-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present the evolution of the electronic structure of CrSBr from its antiferromagnetic ground state to the paramagnetic phase above TN = 132 K, in both experiment and theory. Low-temperature angle-resolved photoemission spectroscopy (ARPES) results are obtained using a novel method to overcome sample charging issues, revealing quasi-2D valence bands in the ground state. The results are very well reproduced by our $${\rm{QSG}}\hat{{\rm{W}}}$$ calculations, which further identify certain bands at the X points to be exchange-split pairs of states with mainly Br and S character. By tracing band positions as a function of temperature, we show the splitting disappears above TN. The energy splitting is interpreted as an effective exchange splitting in individual layers in which the Cr moments all align, within the so-called A-type antiferromagnetic arrangement. Our results lay firm foundations for the interpretation of the many other intriguing physical and optical properties of CrSBr.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.