Susanna Friberg, Caroline Lindblad, Frederick A. Zeiler, Henrik Zetterberg, Tobias Granberg, Per Svenningsson, Fredrik Piehl, Eric P. Thelin
{"title":"Fluid biomarkers of chronic traumatic brain injury","authors":"Susanna Friberg, Caroline Lindblad, Frederick A. Zeiler, Henrik Zetterberg, Tobias Granberg, Per Svenningsson, Fredrik Piehl, Eric P. Thelin","doi":"10.1038/s41582-024-01024-z","DOIUrl":"10.1038/s41582-024-01024-z","url":null,"abstract":"Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted. Traumatic brain injury can result in long-lasting symptoms and is associated with progressive neurodegenerative and neuroinflammatory pathology, but biomarkers to diagnose and monitor these chronic effects are lacking. Here, Thelin and co-workers summarize the available evidence for fluid biomarker use in chronic traumatic brain injury.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 11","pages":"671-684"},"PeriodicalIF":28.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia Cooper, Charles R. Marshall, Jonathan M. Schott, Sube Banerjee
{"title":"Preparing for disease-modifying dementia therapies in the UK","authors":"Claudia Cooper, Charles R. Marshall, Jonathan M. Schott, Sube Banerjee","doi":"10.1038/s41582-024-01022-1","DOIUrl":"10.1038/s41582-024-01022-1","url":null,"abstract":"Although lecanemab has been licensed for use in the UK, the systems to deliver this or similar disease-modifying therapies do not exist. These systems need to be developed urgently, but not at the expense of post-diagnostic care.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 11","pages":"641-642"},"PeriodicalIF":28.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NMOSD and MOGAD: an evolving disease spectrum","authors":"Akiyuki Uzawa, Frederike Cosima Oertel, Masahiro Mori, Friedemann Paul, Satoshi Kuwabara","doi":"10.1038/s41582-024-01014-1","DOIUrl":"10.1038/s41582-024-01014-1","url":null,"abstract":"Neuromyelitis optica (NMO) spectrum disorder (NMOSD) is a relapsing inflammatory disease of the CNS, characterized by the presence of serum aquaporin 4 (AQP4) autoantibodies (AQP4-IgGs) and core clinical manifestations such as optic neuritis, myelitis, and brain or brainstem syndromes. Some people exhibit clinical characteristics of NMOSD but test negative for AQP4-IgG, and a subset of these individuals are now recognized to have serum autoantibodies against myelin oligodendrocyte glycoprotein (MOG) — a condition termed MOG antibody-associated disease (MOGAD). Therefore, the concept of NMOSD is changing, with a disease spectrum emerging that includes AQP4-IgG-seropositive NMOSD, MOGAD and double-seronegative NMOSD. MOGAD shares features with NMOSD, including optic neuritis and myelitis, but has distinct pathophysiology, clinical profiles, neuroimaging findings (including acute disseminated encephalomyelitis and/or cortical encephalitis) and biomarkers. AQP4-IgG-seronegative NMOSD seems to be a heterogeneous condition and requires further study. MOGAD can manifest as either a monophasic or a relapsing disease, whereas NMOSD is usually relapsing. This Review summarizes the history and current concepts of NMOSD and MOGAD, comparing epidemiology, clinical features, neuroimaging, pathology and immunology. In addition, we discuss new monoclonal antibody therapies for AQP4-IgG-seropositive NMOSD that target complement, B cells or IL-6 receptors, which might be applied to MOGAD in the near future. This Review summarizes the history and current concepts of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), including epidemiology, clinical and neuroimaging features and pathophysiology. It also discusses new molecularly targeted therapies for NMOSD that might be also applied to MOGAD in the future.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 10","pages":"602-619"},"PeriodicalIF":28.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tau phosphorylation correlates with multiple sclerosis disease course","authors":"Heather Wood","doi":"10.1038/s41582-024-01017-y","DOIUrl":"10.1038/s41582-024-01017-y","url":null,"abstract":"New research adds to growing evidence of altered tau phosphorylation in multiple sclerosis.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 10","pages":"569-569"},"PeriodicalIF":28.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Håkan Ashina, Rune H. Christensen, Debbie L. Hay, Amynah A. Pradhan, Jan Hoffmann, Dora Reglodi, Andrew F. Russo, Messoud Ashina
{"title":"Pituitary adenylate cyclase-activating polypeptide signalling as a therapeutic target in migraine","authors":"Håkan Ashina, Rune H. Christensen, Debbie L. Hay, Amynah A. Pradhan, Jan Hoffmann, Dora Reglodi, Andrew F. Russo, Messoud Ashina","doi":"10.1038/s41582-024-01011-4","DOIUrl":"10.1038/s41582-024-01011-4","url":null,"abstract":"Migraine is a disabling neurological disorder that affects more than one billion people worldwide. The clinical presentation is characterized by recurrent headache attacks, which are often accompanied by photophobia, phonophobia, nausea and vomiting. Although the pathogenesis of migraine remains incompletely understood, mounting evidence suggests that specific signalling molecules are involved in the initiation and modulation of migraine attacks. These signalling molecules include pituitary adenylate cyclase-activating polypeptide (PACAP), a vasoactive peptide that is known to induce migraine attacks when administered by intravenous infusion to people with migraine. Discoveries linking PACAP to migraine pathogenesis have led to the development of drugs that target PACAP signalling, and a phase II trial has provided evidence that a monoclonal antibody against PACAP is effective for migraine prevention. In this Review, we explore the molecular and cellular mechanisms of PACAP signalling, shedding light on its role in the trigeminovascular system and migraine pathogenesis. We then discuss emerging therapeutic strategies that target PACAP signalling for the treatment of migraine and consider the research needed to translate the current knowledge into a treatment for migraine in the clinic. Pituitary adenylate cyclase-activating polypeptide signalling has been linked to migraine pathogenesis. In this Review, Ashina and co-workers explore the molecular and cellular mechanisms of pituitary adenylate cyclase-activating polypeptide signalling and discuss emerging therapeutic strategies to target this pathway for migraine treatment.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 11","pages":"660-670"},"PeriodicalIF":28.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giancarlo Comi, Gloria Dalla Costa, Bruno Stankoff, Hans-Peter Hartung, Per Soelberg Sørensen, Patrick Vermersch, Letizia Leocani
{"title":"Assessing disease progression and treatment response in progressive multiple sclerosis","authors":"Giancarlo Comi, Gloria Dalla Costa, Bruno Stankoff, Hans-Peter Hartung, Per Soelberg Sørensen, Patrick Vermersch, Letizia Leocani","doi":"10.1038/s41582-024-01006-1","DOIUrl":"10.1038/s41582-024-01006-1","url":null,"abstract":"Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies. The approval of therapies for progressive multiple sclerosis has heightened the need for thorough assessment of disease progression and treatment response. This Review provides a comprehensive summary of available and emerging techniques, including advanced imaging, fluid biomarkers and patient-reported outcomes, highlighting their combined use for the accurate assessment of disease.","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"20 10","pages":"573-586"},"PeriodicalIF":28.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}