{"title":"A flexible hippocampal population code for experience relative to reward","authors":"Marielena Sosa, Mark H. Plitt, Lisa M. Giocomo","doi":"10.1038/s41593-025-01985-4","DOIUrl":"https://doi.org/10.1038/s41593-025-01985-4","url":null,"abstract":"<p>To reinforce rewarding behaviors, events leading up to and following rewards must be remembered. Hippocampal place cell activity spans spatial and non-spatial episodes, but whether hippocampal activity encodes entire sequences of events relative to reward is unknown. Here, to test this possibility, we performed two-photon imaging of hippocampal CA1 as mice navigated virtual environments with changing hidden reward locations. We found that when the reward moved, a subpopulation of neurons updated their firing fields to the same relative position with respect to reward, constructing behavioral timescale sequences spanning the entire task. Over learning, this reward-relative representation became more robust as additional neurons were recruited, and changes in reward-relative firing often preceded behavioral adaptations following reward relocation. Concurrently, the spatial environment code was maintained through a parallel, dynamic subpopulation rather than through dedicated cell classes. These findings reveal how hippocampal ensembles flexibly encode multiple aspects of experience while amplifying behaviorally relevant information.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"12 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144260594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pablo Gimenez-Gomez, Timmy Le, Max Zinter, Peter M’Angale, Violeta Duran-Laforet, Timothy G. Freels, Rebecca Pavchinskiy, Susanna Molas, Dorothy P. Schafer, Andrew R. Tapper, Travis Thomson, Gilles E. Martin
{"title":"Suppression of binge alcohol drinking by an inhibitory neuronal ensemble in the mouse medial orbitofrontal cortex","authors":"Pablo Gimenez-Gomez, Timmy Le, Max Zinter, Peter M’Angale, Violeta Duran-Laforet, Timothy G. Freels, Rebecca Pavchinskiy, Susanna Molas, Dorothy P. Schafer, Andrew R. Tapper, Travis Thomson, Gilles E. Martin","doi":"10.1038/s41593-025-01970-x","DOIUrl":"https://doi.org/10.1038/s41593-025-01970-x","url":null,"abstract":"<p>Alcohol consumption remains a significant global health challenge, directly and indirectly causing millions of deaths annually. Alcohol abuse causes dysregulated activity of the prefrontal cortex, yet effects on specific prefrontal circuits remain to be elucidated. Here, we identify a discrete GABAergic neuronal ensemble in the mouse medial orbitofrontal cortex (mOFC) that is selectively recruited in response to binge alcohol drinking and limits further drinking behavior. Optogenetic silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. This neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. Neurons in this ensemble project widely throughout the brain, but projections specifically to the mediodorsal thalamus regulate binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by reducing alcohol intake, which may offer avenues for the development of mOFC neuronal ensemble-targeted interventions.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"21 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144252309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin A. Plog, Kyungdeok Kim, Daan Verhaege, Min Woo Kim, Zachary Papadopoulos, Krikor Dikranian, Taitea Dykstra, Jay Cao, Richard J. Perrin, Katherine E. Schwetye, Jonathan Kipnis, Antoine Drieu
{"title":"A route for cerebrospinal fluid flow through leptomeningeal arterial–venous overlaps enables macromolecule and fluid shunting","authors":"Benjamin A. Plog, Kyungdeok Kim, Daan Verhaege, Min Woo Kim, Zachary Papadopoulos, Krikor Dikranian, Taitea Dykstra, Jay Cao, Richard J. Perrin, Katherine E. Schwetye, Jonathan Kipnis, Antoine Drieu","doi":"10.1038/s41593-025-01977-4","DOIUrl":"https://doi.org/10.1038/s41593-025-01977-4","url":null,"abstract":"<p>The flow of cerebrospinal fluid (CSF) is important for conveying brain-derived macromolecules for signaling and enabling them to be drained from the brain parenchyma. The glymphatic route is the best-characterized means of this CSF flow; however, it does not permit the movement of larger macromolecules. Here, we identify in mice an alternative route whereby intra-CSF-injected macromolecules can traverse from periarterial to perivenous spaces, with transfer occurring at sites of overlap between leptomeningeal perivascular (arteriovenous) spaces dispersed across the surface of the brain’s leptomeninges. We show that intra-CSF-injected fluorescent tracers can reach the perivenous space by passing through these arteriovenous perivascular overlaps. These spaces remain functional in a mouse model of amyloidosis and are essential for clearing excess CSF volume. These anatomical structures may support brain function by allowing the drainage of brain-derived macromolecules and the shunting of excess fluid and by aiding the immune surveillance of freshly generated CSF.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"10 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakob Voigts, Ingmar Kanitscheider, Nicholas J. Miller, Enrique H. S. Toloza, Jonathan P. Newman, Ila R. Fiete, Mark T. Harnett
{"title":"Spatial reasoning via recurrent neural dynamics in mouse retrosplenial cortex","authors":"Jakob Voigts, Ingmar Kanitscheider, Nicholas J. Miller, Enrique H. S. Toloza, Jonathan P. Newman, Ila R. Fiete, Mark T. Harnett","doi":"10.1038/s41593-025-01944-z","DOIUrl":"https://doi.org/10.1038/s41593-025-01944-z","url":null,"abstract":"<p>From visual perception to language, sensory stimuli change their meaning depending on previous experience. Recurrent neural dynamics can interpret stimuli based on externally cued context, but it is unknown whether they can compute and employ internal hypotheses to resolve ambiguities. Here we show that mouse retrosplenial cortex (RSC) can form several hypotheses over time and perform spatial reasoning through recurrent dynamics. In our task, mice navigated using ambiguous landmarks that are identified through their mutual spatial relationship, requiring sequential refinement of hypotheses. Neurons in RSC and in artificial neural networks encoded mixtures of hypotheses, location and sensory information, and were constrained by robust low-dimensional dynamics. RSC encoded hypotheses as locations in activity space with divergent trajectories for identical sensory inputs, enabling their correct interpretation. Our results indicate that interactions between internal hypotheses and external sensory data in recurrent circuits can provide a substrate for complex sequential cognitive reasoning.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"9 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep cycles process memories","authors":"William P. Olson","doi":"10.1038/s41593-025-01996-1","DOIUrl":"https://doi.org/10.1038/s41593-025-01996-1","url":null,"abstract":"<p>Memory replay during sleep probably facilitates the transfer of memories from intermediate storage in the hippocampus to long-term storage in the cortex. In a paper published in <i>Neuron</i>, Bollmann, Baracskay et al. reveal that memories are not static during this process, but are instead transformed into their long-term state during the sleep period. The authors tracked spatial memory ensembles in the hippocampus of rats across acquisition, a prolonged (17–20 h) sleep/rest period and recall the following day. Acquisition and recall induced distinct neuronal ensembles, and ensemble activity gradually evolved from an acquisition-like to a recall-like state during sleep. Interestingly, non-REM sleep pushed memory drift towards recall, whereas REM sleep counteracted this drift. These findings echo prior work that indicated a crucial role for non-REM sleep in consolidation and also offer intriguing clues regarding the potentially distinct roles of non-REM and REM sleep in this process.</p><p><b>Original reference:</b> <i>Neuron</i> https://doi.org/10.1016/j.neuron.2025.02.025 (2025)</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"39 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144236945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning arousal","authors":"Laura Zelenka","doi":"10.1038/s41593-025-01994-3","DOIUrl":"https://doi.org/10.1038/s41593-025-01994-3","url":null,"abstract":"<p>The locus coeruleus (LC), a major source of noradrenaline in the brain, plays a crucial role in regulating arousal and behavior. Despite its known functions, the mechanisms that control LC activity, particularly the influence of local GABAergic (γ-aminobutyric acid-producing) neurons, remain poorly understood. In a study published in <i>Nature</i>, Luskin, Li et al. identified a heterogeneous population of peri-LC<sup>GABA</sup> neurons that directly inhibit LC neurons, thereby modulating arousal and avoidance behaviors. Using optogenetic and chemogenetic approaches in mice, the authors demonstrated that activation of peri-LC<sup>GABA</sup> neurons markedly suppresses arousal and exploration, whereas inhibiting them heightens anxiety-like and avoidance behaviors. They further revealed the molecular diversity of neuronal populations within both the peri-LC and LC regions by using single-nucleus and spatial transcriptomic analyses in behaving mice. Subsequent experiments uncovered distinct neural responses to various stimuli in specific neuropeptide-expressing subpopulations and implicated these subpopulations in modulating arousal and avoidance behaviors. Together, these findings highlight peri-LC<sup>GABA</sup> neurons as key regulators of LC activity, linking them to arousal-related behaviors and suggesting potential therapeutic targets for neuropsychiatric disorders.</p><p><b>Original reference:</b> <i>Nature</i> https://doi.org/10.1038/s41586-025-08952-w (2025)</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"10 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dopamine says do that again","authors":"Luis A. Mejia","doi":"10.1038/s41593-025-01995-2","DOIUrl":"https://doi.org/10.1038/s41593-025-01995-2","url":null,"abstract":"<p>Repeated actions may be reinforced through action prediction error — the difference between an executed action and its prediction given a particular state — but experimental evidence for such a movement-based, value-free teaching signal has been lacking. Greenstreet, Martinez Vergara, Johansson et al. trained mice on an auditory discrimination task and found that dopamine in the tail of the striatum (TS) is needed for learning, and that TS dopamine levels correlate with movement, but not reward, on the choice task. The movement-related dopamine signal in TS decreased over the course of learning, increased when an unfamiliar stimulus was used, and reinforced stimulus–action associations on the choice task; these findings are consistent with dopamine encoding a value-free action prediction error. A dual-controller model incorporating both value-based (reward prediction error via ventral striatum) and value-free (action prediction error via TS) systems learned the task faster than a value-based controller alone and implicated a role for TS during the later stages of learning. These findings suggest that movement-related dopamine signals in TS, and perhaps in other parts of the dorsal striatum, encode a value-free teaching signal that reinforces state–action associations, promoting the repetition of actions. Action prediction error may thus serve as the basis for the implementation of habitual behavior.</p><p><b>Original reference:</b> <i>Nature</i> https://doi.org/10.1038/s41586-025-09008-9 (2025)</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"523 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144237173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noninvasive reduction of neural rigidity alters autistic behaviors in humans","authors":"Takamitsu Watanabe, Hidenori Yamasue","doi":"10.1038/s41593-025-01961-y","DOIUrl":"https://doi.org/10.1038/s41593-025-01961-y","url":null,"abstract":"<p>Autistic behaviors correlate with reductions in specific brain-state transitions in global neural dynamics, implying that the mitigation of such rigid brain dynamics may alter autistic traits. To examine this possibility, we investigated longitudinal behavioral effects of state-dependent transcranial magnetic stimulation (TMS) in autistic adults. We found that excitatory TMS over the right parietal lobule decreased neural rigidity, which commensurately reduced social and nonsocial autistic behaviors. Specifically, TMS-induced neural flexibility immediately decreased cognitive inflexibility and slowly reduced overstable perception and atypical nonverbal communication. In particular, perceptual overstability was reduced after TMS-induced neural flexibility strengthened the coupling between the frontoparietal and visual networks, whereas atypical nonverbal communication became less explicit when the neural flexibility enhanced the coupling between the frontoparietal, default mode and salience networks. These results indicate that alteration of neural rigidity could change multiple autistic traits.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"20 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144228853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyoko Tossell, Xiao Yu, Panagiotis Giannos, Berta Anuncibay Soto, Mathieu Nollet, Raquel Yustos, Giulia Miracca, Mikal Vicente, Andawei Miao, Bryan Hsieh, Ying Ma, Alexei L. Vyssotski, Tim Constandinou, Nicholas P. Franks, William Wisden
{"title":"Author Correction: Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus","authors":"Kyoko Tossell, Xiao Yu, Panagiotis Giannos, Berta Anuncibay Soto, Mathieu Nollet, Raquel Yustos, Giulia Miracca, Mikal Vicente, Andawei Miao, Bryan Hsieh, Ying Ma, Alexei L. Vyssotski, Tim Constandinou, Nicholas P. Franks, William Wisden","doi":"10.1038/s41593-025-02003-3","DOIUrl":"https://doi.org/10.1038/s41593-025-02003-3","url":null,"abstract":"<p>Correction to: <i>Nature Neuroscience</i> https://doi.org/10.1038/s41593-023-01430-4, published online 21 September 2023.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"25 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144218883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA dysregulation impairs stress resilience in aged neurons","authors":"","doi":"10.1038/s41593-025-01953-y","DOIUrl":"https://doi.org/10.1038/s41593-025-01953-y","url":null,"abstract":"Aging is a primary risk factor for neurodegenerative diseases. This study shows that key RNA pathways are disrupted in old neurons, including splicing and the stress response. Because of these changes, the aging brain has reduced resilience to new stress, which might predispose old neurons to disease.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"45 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144218884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}