Sam V Norman-Haignere,Menoua Keshishian,Orrin Devinsky,Werner Doyle,Guy M McKhann,Catherine A Schevon,Adeen Flinker,Nima Mesgarani
{"title":"人类听觉皮层的时间整合主要与绝对时间相关联。","authors":"Sam V Norman-Haignere,Menoua Keshishian,Orrin Devinsky,Werner Doyle,Guy M McKhann,Catherine A Schevon,Adeen Flinker,Nima Mesgarani","doi":"10.1038/s41593-025-02060-8","DOIUrl":null,"url":null,"abstract":"Sound structures such as phonemes and words have highly variable durations. Therefore, there is a fundamental difference between integrating across absolute time (for example, 100 ms) versus sound structure (for example, phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of time and structure, respectively, but the extent to which cortical computations reflect time or structure remains unknown. Here, to answer this question, we rescaled the duration of all speech structures using time stretching and compression and measured integration windows in the human auditory cortex using a new experimental and computational method applied to spatiotemporally precise intracranial recordings. We observed slightly longer integration windows for stretched speech, but this lengthening was very small (~5%) relative to the change in structure durations, even in non-primary regions strongly implicated in speech-specific processing. These findings demonstrate that time-yoked computations dominate throughout the human auditory cortex, placing important constraints on neurocomputational models of structure processing.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"11 1","pages":""},"PeriodicalIF":20.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal integration in human auditory cortex is predominantly yoked to absolute time.\",\"authors\":\"Sam V Norman-Haignere,Menoua Keshishian,Orrin Devinsky,Werner Doyle,Guy M McKhann,Catherine A Schevon,Adeen Flinker,Nima Mesgarani\",\"doi\":\"10.1038/s41593-025-02060-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound structures such as phonemes and words have highly variable durations. Therefore, there is a fundamental difference between integrating across absolute time (for example, 100 ms) versus sound structure (for example, phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of time and structure, respectively, but the extent to which cortical computations reflect time or structure remains unknown. Here, to answer this question, we rescaled the duration of all speech structures using time stretching and compression and measured integration windows in the human auditory cortex using a new experimental and computational method applied to spatiotemporally precise intracranial recordings. We observed slightly longer integration windows for stretched speech, but this lengthening was very small (~5%) relative to the change in structure durations, even in non-primary regions strongly implicated in speech-specific processing. These findings demonstrate that time-yoked computations dominate throughout the human auditory cortex, placing important constraints on neurocomputational models of structure processing.\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":20.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41593-025-02060-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-02060-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Temporal integration in human auditory cortex is predominantly yoked to absolute time.
Sound structures such as phonemes and words have highly variable durations. Therefore, there is a fundamental difference between integrating across absolute time (for example, 100 ms) versus sound structure (for example, phonemes). Auditory and cognitive models have traditionally cast neural integration in terms of time and structure, respectively, but the extent to which cortical computations reflect time or structure remains unknown. Here, to answer this question, we rescaled the duration of all speech structures using time stretching and compression and measured integration windows in the human auditory cortex using a new experimental and computational method applied to spatiotemporally precise intracranial recordings. We observed slightly longer integration windows for stretched speech, but this lengthening was very small (~5%) relative to the change in structure durations, even in non-primary regions strongly implicated in speech-specific processing. These findings demonstrate that time-yoked computations dominate throughout the human auditory cortex, placing important constraints on neurocomputational models of structure processing.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.