Nature Reviews Genetics最新文献

筛选
英文 中文
Methods and applications of genome-wide profiling of DNA damage and rare mutations DNA 损伤和罕见突变的全基因组图谱分析方法和应用
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-25 DOI: 10.1038/s41576-024-00748-4
Gerd P. Pfeifer, Seung-Gi Jin
{"title":"Methods and applications of genome-wide profiling of DNA damage and rare mutations","authors":"Gerd P. Pfeifer, Seung-Gi Jin","doi":"10.1038/s41576-024-00748-4","DOIUrl":"10.1038/s41576-024-00748-4","url":null,"abstract":"DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed. In this Review, Pfeifer and Jin discuss currently available methods for genome-wide mapping of DNA damage and rare mutations and illustrate how these technologies are being used to study mechanisms of mutagenesis linked to the aetiology of human diseases.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 12","pages":"846-863"},"PeriodicalIF":39.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequencing-based analysis of microbiomes 基于测序的微生物组分析
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-25 DOI: 10.1038/s41576-024-00746-6
Yishay Pinto, Ami S. Bhatt
{"title":"Sequencing-based analysis of microbiomes","authors":"Yishay Pinto, Ami S. Bhatt","doi":"10.1038/s41576-024-00746-6","DOIUrl":"10.1038/s41576-024-00746-6","url":null,"abstract":"Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level. In this Review, Pinto and Bhatt provide an overview of DNA-sequencing and RNA-sequencing approaches that can be used to study the composition, structure, and function of microbiomes and discuss the biological insights they provide.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 12","pages":"829-845"},"PeriodicalIF":39.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A digital marker for coronary artery disease 冠状动脉疾病的数字标记
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-24 DOI: 10.1038/s41576-024-00755-5
Linda Koch
{"title":"A digital marker for coronary artery disease","authors":"Linda Koch","doi":"10.1038/s41576-024-00755-5","DOIUrl":"10.1038/s41576-024-00755-5","url":null,"abstract":"Petrazzini et al. leverage exome sequencing data and a novel machine learning-based marker to identify rare and ultra-rare coding variants associated with coronary artery disease.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 8","pages":"529-529"},"PeriodicalIF":39.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tandem repeats in the long-read sequencing era 长读数测序时代的串联重复序列
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-19 DOI: 10.1038/s41576-024-00751-9
{"title":"Tandem repeats in the long-read sequencing era","authors":"","doi":"10.1038/s41576-024-00751-9","DOIUrl":"10.1038/s41576-024-00751-9","url":null,"abstract":"Tandem repeats are ubiquitous in the human genome and hold crucial information about our genetic diversity, evolution and susceptibility to disease.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 7","pages":"449-449"},"PeriodicalIF":42.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41576-024-00751-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How germ granules promote germ cell fate 生殖颗粒如何促进生殖细胞的命运
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-18 DOI: 10.1038/s41576-024-00744-8
Melissa C. Pamula, Ruth Lehmann
{"title":"How germ granules promote germ cell fate","authors":"Melissa C. Pamula, Ruth Lehmann","doi":"10.1038/s41576-024-00744-8","DOIUrl":"10.1038/s41576-024-00744-8","url":null,"abstract":"Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation. In this Review, Pamula and Lehmann describe how distinct membraneless germ granules organize the germ cell cytoplasm at different stages of the germline life cycle to determine germ cell identity, maintain genome integrity and regulate gamete differentiation.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 11","pages":"803-821"},"PeriodicalIF":39.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BRCA1 and friends 30 years on 30 年后的 BRCA1 和朋友们
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-17 DOI: 10.1038/s41576-024-00754-6
William D. Foulkes
{"title":"BRCA1 and friends 30 years on","authors":"William D. Foulkes","doi":"10.1038/s41576-024-00754-6","DOIUrl":"10.1038/s41576-024-00754-6","url":null,"abstract":"With the benefit of hindsight, recognition of the cancer susceptibility gene BRCA1 and its later cloning were defining moments for breast and ovarian cancer genetics that should be celebrated. Thirty years after the discovery and cloning of the cancer susceptibility gene BRCA1, William Foulkes reflects on this defining moment for breast and ovarian cancer genetics and how far the field has come.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 10","pages":"671-672"},"PeriodicalIF":39.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA packaging by molecular motors: from bacteriophage to human chromosomes 分子马达的 DNA 包装:从噬菌体到人类染色体
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-17 DOI: 10.1038/s41576-024-00740-y
Bram Prevo, William C. Earnshaw
{"title":"DNA packaging by molecular motors: from bacteriophage to human chromosomes","authors":"Bram Prevo, William C. Earnshaw","doi":"10.1038/s41576-024-00740-y","DOIUrl":"10.1038/s41576-024-00740-y","url":null,"abstract":"Dense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells. Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes. In this Review, the authors summarize DNA packaging in bacteriophage, bacteria and eukaryotic cells. They describe the difficulties each system faces when packaging its DNA, outline the molecular motor components involved, and provide insights from new studies that reveal how DNA organization is achieved.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 11","pages":"785-802"},"PeriodicalIF":39.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation data filtering in the genomics era 基因组时代的新一代数据过滤
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-14 DOI: 10.1038/s41576-024-00738-6
William Hemstrom, Jared A. Grummer, Gordon Luikart, Mark R. Christie
{"title":"Next-generation data filtering in the genomics era","authors":"William Hemstrom, Jared A. Grummer, Gordon Luikart, Mark R. Christie","doi":"10.1038/s41576-024-00738-6","DOIUrl":"10.1038/s41576-024-00738-6","url":null,"abstract":"Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s D value, population differentiation (FST), nucleotide diversity (π) and effective population size (Ne). Filtering genomic data is a crucial step to ensure the quality and reliability of downstream analyses. The authors provide guidance on the choice of filtering strategies and thresholds, including filters that remove sequencing bases or reads, variants, loci, genotypes or individuals from genomic datasets to improve accuracy and reproducibility.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 11","pages":"750-767"},"PeriodicalIF":39.1,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Mendel’s laws to non-Mendelian inheritance 从孟德尔定律到非孟德尔遗传
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-12 DOI: 10.1038/s41576-024-00753-7
Laura Ross
{"title":"From Mendel’s laws to non-Mendelian inheritance","authors":"Laura Ross","doi":"10.1038/s41576-024-00753-7","DOIUrl":"10.1038/s41576-024-00753-7","url":null,"abstract":"In this Journal Club article, Laura Ross discusses several seminal papers that describe the discovery of germline-specific chromosomes and paternal genome elimination, striking examples of non-Mendelian genetics.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 10","pages":"677-677"},"PeriodicalIF":39.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mini-colons unlock tumour development outside the body 小结肠揭开肿瘤在体外发展的秘密
IF 39.1 1区 生物学
Nature Reviews Genetics Pub Date : 2024-06-05 DOI: 10.1038/s41576-024-00752-8
L. Francisco Lorenzo-Martín, Matthias P. Lutolf
{"title":"Mini-colons unlock tumour development outside the body","authors":"L. Francisco Lorenzo-Martín, Matthias P. Lutolf","doi":"10.1038/s41576-024-00752-8","DOIUrl":"10.1038/s41576-024-00752-8","url":null,"abstract":"In this Tools of the Trade article, Francisco Lorenzo-Martín and Matthias Lutolf present mini-colons as a new ex vivo cancer model that incorporates microfabrication, tissue engineering and optogenetics.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 9","pages":"598-598"},"PeriodicalIF":39.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信