Brieuc Lehmann, Leandra Bräuninger, Yoonsu Cho, Fabian Falck, Smera Jayadeva, Michael Katell, Thuy Nguyen, Antonella Perini, Sam Tallman, Maxine Mackintosh, Matt Silver, Karoline Kuchenbäcker, David Leslie, Nilanjan Chatterjee, Chris Holmes
{"title":"基因组数据分析中促进卫生公平的方法学机会","authors":"Brieuc Lehmann, Leandra Bräuninger, Yoonsu Cho, Fabian Falck, Smera Jayadeva, Michael Katell, Thuy Nguyen, Antonella Perini, Sam Tallman, Maxine Mackintosh, Matt Silver, Karoline Kuchenbäcker, David Leslie, Nilanjan Chatterjee, Chris Holmes","doi":"10.1038/s41576-025-00839-w","DOIUrl":null,"url":null,"abstract":"<p>The causes and consequences of inequities in genomic research and medicine are complex and widespread. However, it is widely acknowledged that underrepresentation of diverse populations in human genetics research risks exacerbating existing health disparities. Efforts to improve diversity are ongoing, but an often-overlooked source of inequity is the choice of analytical methods used to process, analyse and interpret genomic data. This choice can influence all areas of genomic research, from genome-wide association studies and polygenic score development to variant prioritization and functional genomics. New statistical and machine learning techniques to understand, quantify and correct for the impact of biases in genomic data are emerging within the wider genomic research and genomic medicine ecosystems. At this crucial time point, it is important to clarify where improvements in methods and practices can, or cannot, have a role in improving equity in genomics. Here, we review existing approaches to promote equity and fairness in statistical analysis for genomics, and propose future methodological developments that are likely to yield the most impact for equity.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"125 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodological opportunities in genomic data analysis to advance health equity\",\"authors\":\"Brieuc Lehmann, Leandra Bräuninger, Yoonsu Cho, Fabian Falck, Smera Jayadeva, Michael Katell, Thuy Nguyen, Antonella Perini, Sam Tallman, Maxine Mackintosh, Matt Silver, Karoline Kuchenbäcker, David Leslie, Nilanjan Chatterjee, Chris Holmes\",\"doi\":\"10.1038/s41576-025-00839-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The causes and consequences of inequities in genomic research and medicine are complex and widespread. However, it is widely acknowledged that underrepresentation of diverse populations in human genetics research risks exacerbating existing health disparities. Efforts to improve diversity are ongoing, but an often-overlooked source of inequity is the choice of analytical methods used to process, analyse and interpret genomic data. This choice can influence all areas of genomic research, from genome-wide association studies and polygenic score development to variant prioritization and functional genomics. New statistical and machine learning techniques to understand, quantify and correct for the impact of biases in genomic data are emerging within the wider genomic research and genomic medicine ecosystems. At this crucial time point, it is important to clarify where improvements in methods and practices can, or cannot, have a role in improving equity in genomics. Here, we review existing approaches to promote equity and fairness in statistical analysis for genomics, and propose future methodological developments that are likely to yield the most impact for equity.</p>\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":39.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41576-025-00839-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00839-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Methodological opportunities in genomic data analysis to advance health equity
The causes and consequences of inequities in genomic research and medicine are complex and widespread. However, it is widely acknowledged that underrepresentation of diverse populations in human genetics research risks exacerbating existing health disparities. Efforts to improve diversity are ongoing, but an often-overlooked source of inequity is the choice of analytical methods used to process, analyse and interpret genomic data. This choice can influence all areas of genomic research, from genome-wide association studies and polygenic score development to variant prioritization and functional genomics. New statistical and machine learning techniques to understand, quantify and correct for the impact of biases in genomic data are emerging within the wider genomic research and genomic medicine ecosystems. At this crucial time point, it is important to clarify where improvements in methods and practices can, or cannot, have a role in improving equity in genomics. Here, we review existing approaches to promote equity and fairness in statistical analysis for genomics, and propose future methodological developments that are likely to yield the most impact for equity.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.