{"title":"Miller spreads and the power of observation","authors":"Mustafa Mir","doi":"10.1038/s41576-024-00739-5","DOIUrl":"10.1038/s41576-024-00739-5","url":null,"abstract":"Mustafa Mir reflects on a 1976 paper by McKnight and Miller, in which they developed a technique to directly visualize gene regulatory dynamics.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 9","pages":"601-601"},"PeriodicalIF":39.1,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dysregulation of epigenetically induced cancers","authors":"Henry Ertl","doi":"10.1038/s41576-024-00742-w","DOIUrl":"10.1038/s41576-024-00742-w","url":null,"abstract":"A study in Nature finds that transient perturbation of the Polycomb complex and target epigenome can irreversibly induce cancer cell fates.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 7","pages":"456-456"},"PeriodicalIF":42.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetics of glycosylation in mammalian development and disease","authors":"Pamela Stanley","doi":"10.1038/s41576-024-00725-x","DOIUrl":"10.1038/s41576-024-00725-x","url":null,"abstract":"Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering. In this Review, Stanley summarizes the role of genetics in mammalian glycosylation, highlighting how advances in genetic and genomic technologies are helping to characterize the genes involved and contributing to the development of therapies for diseases related to glycosylation.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 10","pages":"715-729"},"PeriodicalIF":39.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tandem repeat variation of human centromeres","authors":"Kirsty Minton","doi":"10.1038/s41576-024-00741-x","DOIUrl":"10.1038/s41576-024-00741-x","url":null,"abstract":"Logsdon et al. report the second complete sequence of all centromeres from a single human genome, enabling comparative analyses of the variation in tandemly repeating α-satellite DNA.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 7","pages":"455-455"},"PeriodicalIF":42.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The emerging role of tandem repeats in complex traits","authors":"Michael Lamkin, Melissa Gymrek","doi":"10.1038/s41576-024-00736-8","DOIUrl":"10.1038/s41576-024-00736-8","url":null,"abstract":"Tandem repeats are a large source of genetic variation but are challenging to analyse and have been missing from most genome-wide studies. Results now suggest that systematic incorporation of tandem repeats into complex trait analyses is likely to yield a rich source of causal variants and new biological insights. In this Comment, Lamkin and Gymrek discuss recent results that suggest that the systematic incorporation of tandem repeats into complex trait analyses will yield a rich source of causal variants and new biological insights.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 7","pages":"452-453"},"PeriodicalIF":42.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prime editing sensors enable multiplexed genome editing","authors":"Samuel I. Gould","doi":"10.1038/s41576-024-00737-7","DOIUrl":"10.1038/s41576-024-00737-7","url":null,"abstract":"In this Tools of the Trade article, Samuel Gould explains how prime editing sensors can improve experimental efficiency and can be designed using a computational tool he created and named PEGG.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 7","pages":"454-454"},"PeriodicalIF":42.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid pathogen surveillance: field-ready sequencing solutions","authors":"Kirstyn Brunker","doi":"10.1038/s41576-024-00734-w","DOIUrl":"10.1038/s41576-024-00734-w","url":null,"abstract":"In this Journal Club, Kirstyn Brunker highlights two papers published in 2017 that showcase how the emergence of portable sequencing capabilities improved the real-time response to infectious disease outbreaks on a global scale.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 8","pages":"532-532"},"PeriodicalIF":39.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The hidden world of transient enhancers","authors":"Renée Beekman","doi":"10.1038/s41576-024-00735-9","DOIUrl":"10.1038/s41576-024-00735-9","url":null,"abstract":"Renée Beekman discusses the possibilities for research into transient enhancers by highlighting a recent paper by Vermunt et al. that identifies how they can modulate gene silencing dynamics.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 8","pages":"533-533"},"PeriodicalIF":39.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What tubulin can teach us about gene regulation","authors":"Olivia S. Rissland","doi":"10.1038/s41576-024-00733-x","DOIUrl":"10.1038/s41576-024-00733-x","url":null,"abstract":"In this Journal Club article, Olivia Rissland describes how a 1987 paper by Don Cleveland and colleagues provided insight into co-translational gene regulation of tubulin.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 8","pages":"531-531"},"PeriodicalIF":39.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeted genome-modification tools and their advanced applications in crop breeding","authors":"Boshu Li, Chao Sun, Jiayang Li, Caixia Gao","doi":"10.1038/s41576-024-00720-2","DOIUrl":"10.1038/s41576-024-00720-2","url":null,"abstract":"Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products. Targeted genome modification using CRISPR–Cas genome editing, base editing or prime editing is driving base research in plants and precise molecular breeding. The authors review the technological principles underlying these methods, approaches for their delivery in plants, and emerging crop-breeding strategies based on targeted genome modification.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 9","pages":"603-622"},"PeriodicalIF":39.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}