{"title":"转录凝聚物作为时间信号积分器的新角色","authors":"Kirstin Meyer, Bo Huang, Orion D. Weiner","doi":"10.1038/s41576-025-00837-y","DOIUrl":null,"url":null,"abstract":"<p>Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"90 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging roles of transcriptional condensates as temporal signal integrators\",\"authors\":\"Kirstin Meyer, Bo Huang, Orion D. Weiner\",\"doi\":\"10.1038/s41576-025-00837-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.</p>\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":39.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41576-025-00837-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00837-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Emerging roles of transcriptional condensates as temporal signal integrators
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.