{"title":"早期哺乳动物胚胎发生的表观基因组动力学","authors":"Adam Burton, Maria-Elena Torres-Padilla","doi":"10.1038/s41576-025-00831-4","DOIUrl":null,"url":null,"abstract":"<p>During early embryonic development in mammals, the totipotency of the zygote — which is reprogrammed from the differentiated gametes — transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"57 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenome dynamics in early mammalian embryogenesis\",\"authors\":\"Adam Burton, Maria-Elena Torres-Padilla\",\"doi\":\"10.1038/s41576-025-00831-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During early embryonic development in mammals, the totipotency of the zygote — which is reprogrammed from the differentiated gametes — transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.</p>\",\"PeriodicalId\":19067,\"journal\":{\"name\":\"Nature Reviews Genetics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":39.1000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41576-025-00831-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00831-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Epigenome dynamics in early mammalian embryogenesis
During early embryonic development in mammals, the totipotency of the zygote — which is reprogrammed from the differentiated gametes — transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.