Philip M. Boone, Teresa Buenaventura, James W. D. King, Matthias Merkenschlager
{"title":"X-linked competition — implications for human development and disease","authors":"Philip M. Boone, Teresa Buenaventura, James W. D. King, Matthias Merkenschlager","doi":"10.1038/s41576-025-00840-3","DOIUrl":null,"url":null,"abstract":"<p>During early mammalian female development, X chromosome inactivation leads to random transcriptional silencing of one of the two X chromosomes. This inactivation is maintained through subsequent cell divisions, leading to intra-individual diversity, whereby cells express either the maternal or paternal X chromosome. Differences in X chromosome sequence content can trigger competitive interactions between clones that may alter organismal development and skew the representation of X-linked sequence variants in a cell-type-specific manner — a recently described phenomenon termed X-linked competition in analogy to existing cell competition paradigms. Skewed representation can define the phenotypic impact of X-linked variants, for example, the manifestation of disease in female carriers of X-linked disease alleles. Here, we review what is currently known about X-linked competition, reflect on what remains to be learnt and map out the implications for X-linked human disease.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"38 1","pages":""},"PeriodicalIF":39.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00840-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
During early mammalian female development, X chromosome inactivation leads to random transcriptional silencing of one of the two X chromosomes. This inactivation is maintained through subsequent cell divisions, leading to intra-individual diversity, whereby cells express either the maternal or paternal X chromosome. Differences in X chromosome sequence content can trigger competitive interactions between clones that may alter organismal development and skew the representation of X-linked sequence variants in a cell-type-specific manner — a recently described phenomenon termed X-linked competition in analogy to existing cell competition paradigms. Skewed representation can define the phenotypic impact of X-linked variants, for example, the manifestation of disease in female carriers of X-linked disease alleles. Here, we review what is currently known about X-linked competition, reflect on what remains to be learnt and map out the implications for X-linked human disease.
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.