NanotechnologyPub Date : 2024-10-24DOI: 10.1088/1361-6528/ad86c8
Jinxiu Zhao, Kai Li, Jingyi Xu, Xiang Ren, Liyi Shi
{"title":"Coherent NiS<sub>2</sub>@SnS<sub>2</sub>nanosheet for accelerating electrocatalytic nitrate reduction to ammonia.","authors":"Jinxiu Zhao, Kai Li, Jingyi Xu, Xiang Ren, Liyi Shi","doi":"10.1088/1361-6528/ad86c8","DOIUrl":"https://doi.org/10.1088/1361-6528/ad86c8","url":null,"abstract":"<p><p>The development of an effective and selective catalyst is the key to improving the multi-electron transfer nitrate reduction reaction (NO<sub>3</sub><sup>-</sup>RR) to ammonia. Here, we synthesized a coherent NiS<sub>2</sub>@SnS<sub>2</sub>nanosheet catalyst loaded on carbon cloth via one-step solvothermal method. Experimental data reveals that the integration of NiS<sub>2</sub>and SnS<sub>2</sub>can enhance the NO<sub>3</sub><sup>-</sup>RR performance in terms of high NH<sub>3</sub>yield rate of 408.2<i>μ</i>g h<sup>-1</sup>cm<sup>-2</sup>and Faradaic efficiency of 89.61%, as well as satisfying cycling and long-time stability.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-24DOI: 10.1088/1361-6528/ad86c7
Dan Zhang, Hao Wang, Chunyang Chen, Guifang Lu, Yan Yin, Mudan Ren, Jin Huang
{"title":"Preparation and identification of a fluorescent probe with CsPbBr<sub>3</sub>perovskite quantum dots and CD44v6 specific peptide for gastric cancer imaging.","authors":"Dan Zhang, Hao Wang, Chunyang Chen, Guifang Lu, Yan Yin, Mudan Ren, Jin Huang","doi":"10.1088/1361-6528/ad86c7","DOIUrl":"10.1088/1361-6528/ad86c7","url":null,"abstract":"<p><p>Since the sensitivity and accuracy of traditional detection for early gastric cancer diagnosis are still insufficient, it is significant to continuously optimize the optical molecular imaging detection technology based on an endoscopic platform. The signal intensity and stability of traditional chemical fluorescent dyes are low, which hinders the clinical application of molecular imaging detection technology. This work developed a probe based on perovskite quantum dots (PQDs) and peptide ligands. By utilizing CsPbBr<sub>3</sub>perovskite PQDs modified by azithromycin (AZI), combined with the specific polypeptide ligand of CD44v6, a gastric cancer biomarker, the perovskite-based probe (AZI-PQDs probe) which can specifically identify gastric cancer tumor was prepared. Owing to the high photoluminescence quantum yield of CsPbBr<sub>3</sub>PQDs, the naked eye can observe the imaging under the excitation of the hand-held ultraviolet light source. AZI-PQDs probe can accurately identify gastric cancer cells, tissues, and xenograft models with experiments of<i>ex vivo</i>and<i>in vivo</i>fluorescence imaging detection. It also exhibited low toxicity and immunogenicity, indicating the safety of the probe. This work provides a probe combined with cancer specificity and a reliable fluorescent signal that has the potential for application in gastric cancer optical molecular imaging.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-24DOI: 10.1088/1361-6528/ad86c9
Nawzat S Saadi, Laylan B Hassan, S M Sayem, Karren L More, Tansel Karabacak
{"title":"Growth of zinc oxide nanowires by a hot water deposition method.","authors":"Nawzat S Saadi, Laylan B Hassan, S M Sayem, Karren L More, Tansel Karabacak","doi":"10.1088/1361-6528/ad86c9","DOIUrl":"https://doi.org/10.1088/1361-6528/ad86c9","url":null,"abstract":"<p><p>Recently, various methods have been developed for synthesizing zinc oxide (ZnO) nanostructures, including physical and chemical vapor deposition, as well as wet chemistry. These common methods require either high temperature, high vacuum, or toxic chemicals. In this study, we report the growth of zinc oxide ZnO nanowires by a new hot water deposition (HWD) method on various types of substrates, including copper plates, foams, and meshes, as well as on indium tin oxide (ITO)-coated glasses (ITO/glass). HWD is derived from the hot water treatment (HWT) method, which involves immersing piece(s) of metal and substrate(s) in hot deionized water and does not require any additives or catalysts. Metal acts as the source of metal oxide molecules that migrate in water and deposit on the substrate surface to form metal oxide nanostructures (MONSTRs). The morphological and crystallographic analyses of the source-metals and substrates revealed the presence of uniformly crystalline ZnO nanorods after the HWD. In addition, the growth mechanism of ZnO nanowires using HWD is discussed. This process is simple, inexpensive, low temperature, scalable, and eco-friendly. Moreover, HWD can be used to deposit a large variety of MONSTRs on almost any type of substrate material or geometry.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-24DOI: 10.1088/1361-6528/ad84fc
G Swati, Savvi Mishra
{"title":"Luminescent nanomaterials for developing high-contrast latent fingerprints.","authors":"G Swati, Savvi Mishra","doi":"10.1088/1361-6528/ad84fc","DOIUrl":"10.1088/1361-6528/ad84fc","url":null,"abstract":"<p><p>Fingerprint patterns (or epidermal ridges) are by far one of the most reliable techniques for individual identification. Fingerprint patterns get deposited on all kinds of solid surfaces due to human transudation or exudation process. Bodily fluids through sweat glands contain moisture, natural oils and proteins. Since latent fingerprint patterns are not readily recognizable they are collected from a crime scene and are further processed physically or chemically. Fingerprints obtained using conventional black and white powders face severe drawbacks including low sensitivity, high background interference from the substrates, involvement of toxic materials, and poor stability. To overcome the above-listed issues, especially for coloured and transparent substrates, luminescent materials have emerged as potential agents for rapid visualization of high-contrast latent fingerprints. This review covers the recent advancements in luminescent nanomaterials of both kinds (up and down conversion) and persistent nanophosphors for developing latent fingerprints. Special emphasis has been given to an unusual class of luminescent materials known as persistent nanophosphors, which do not require a constant excitation, thereby completely eradicating background noise. The review also covers different approaches to gathering fingerprints such as powder dusting, cyanoacrylate fuming, ninhydrin fuming and vacuum metal deposition.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-24DOI: 10.1088/1361-6528/ad823e
Zhuoyang He, HeeBong Yang, Na Young Kim
{"title":"Device simulation study of multilayer MoS<sub>2</sub>Schottky barrier field-effect transistors.","authors":"Zhuoyang He, HeeBong Yang, Na Young Kim","doi":"10.1088/1361-6528/ad823e","DOIUrl":"10.1088/1361-6528/ad823e","url":null,"abstract":"<p><p>Molybdenum disulfide (MoS<sub>2</sub>) is a representative two-dimensional layered transition-metal dichalcogenide semiconductor. Layer-number-dependent electronic properties are attractive in the development of nanomaterial-based electronics for a wide range of applications including sensors, switches, and amplifiers. MoS<sub>2</sub>field-effect transistors (FETs) have been studied as promising future nanoelectronic devices with desirable features of atomic-level thickness and high electrical properties. When a naturally<i>n</i>-doped MoS<sub>2</sub>is contacted with metals, a strong Fermi-level pinning effect adjusts a Schottky barrier and influences its electronic characteristics significantly. In this study, we investigate multilayer MoS<sub>2</sub>Schottky barrier FETs (SBFETs), emphasizing the metal-contact impact on device performance via computational device modeling. We find that<i>p</i>-type MoS<sub>2</sub>SBFETs may be built with appropriate metals and gate voltage control. Furthermore, we propose ambipolar multilayer MoS<sub>2</sub>SBFETs with asymmetric metal electrodes, which exhibit gate-voltage dependent ambipolar transport behavior through optimizing metal contacts in MoS<sub>2</sub>device. Introducing a dual-split gate geometry, the MoS<sub>2</sub>SBFETs can further operate in four distinct configurations:<i>p</i> - <i>p</i>,<i>n</i> - <i>n</i>,<i>p</i> - <i>n</i>, and<i>n</i> - <i>p</i>. Electrical characteristics are calculated, and improved performance of a high rectification ratio can be feasible as an attractive feature for efficient electrical and photonic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrically conductive nanomaterials: transformative applications in biomedical engineering-a review.","authors":"Oindrila Banik, Amol Lalchand Salve, Prasoon Kumar, Santosh Kumar, Earu Banoth","doi":"10.1088/1361-6528/ad857d","DOIUrl":"10.1088/1361-6528/ad857d","url":null,"abstract":"<p><p>In recent years, significant advancements in nanotechnology have improved the various disciplines of scientific fields. Nanomaterials, like, carbon-based (carbon nanotubes, graphene), metallic, metal oxides, conductive polymers, and 2D materials (MXenes) exhibit exceptional electrical conductivity, mechanical strength, flexibility, thermal property and chemical stability. These materials hold significant capability in transforming material science and biomedical engineering by enabling the creation of more efficient, miniaturized, and versatile devices. The indulgence of nanotechnology with conductive materials in biological fields promises a transformative innovation across various industries, from bioelectronics to environmental regulations. The conductivity of nanomaterials with a suitable size and shape exhibits unique characteristics, which provides a platform for realization in bioelectronics as biosensors, tissue engineering, wound healing, and drug delivery systems. It can be explored for state-of-the-art cardiac, skeletal, nerve, and bone scaffold fabrication while highlighting their proof-of-concept in the development of biosensing probes and medical imaging. This review paper highlights the significance and application of the conductive nanomaterials associated with conductivity and their contribution towards a new perspective in improving the healthcare system globally.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-23DOI: 10.1088/1361-6528/ad8356
K Loeto, G Kusch, O Brandt, P-M Coulon, S Hammersley, J Lähnemann, I Girgel, S M Fairclough, M Sarkar, P A Shields, R A Oliver
{"title":"Investigating the exciton dynamics in InGaN/GaN core-shell nanorods using time-resolved cathodoluminescence.","authors":"K Loeto, G Kusch, O Brandt, P-M Coulon, S Hammersley, J Lähnemann, I Girgel, S M Fairclough, M Sarkar, P A Shields, R A Oliver","doi":"10.1088/1361-6528/ad8356","DOIUrl":"10.1088/1361-6528/ad8356","url":null,"abstract":"<p><p>This study examines the exciton dynamics in InGaN/GaN core-shell nanorods using time-resolved cathodoluminescence (TRCL), which provides nanometer-scale lateral spatial and tens of picoseconds temporal resolutions. The focus is on thick (>20 nm) InGaN layers on the non-polar, semi-polar and polar InGaN facets, which are accessible for study due to the unique nanorod geometry. Spectrally integrated TRCL decay transients reveal distinct recombination behaviours across these facets, indicating varied exciton lifetimes. By extracting fast and slow lifetime components and observing their temperature trends along with those of the integrated and peak intensity, the differences in behaviour were linked to variations in point defect density and the degree and density of localisation centres in the different regions. Further analysis shows that the non-polar and polar regions demonstrate increasing lifetimes with decreasing emission energy, attributed to an increase in the depth of localisation. This investigation provides insights into the intricate exciton dynamics in InGaN/GaN nanorods, offering valuable information for the design and development of optoelectronic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-22DOI: 10.1088/1361-6528/ad83d8
Jin Li, Zezhong Xiang, Shunpu Li
{"title":"Self-assembled micro-patterns in uphill-diffusion solution system.","authors":"Jin Li, Zezhong Xiang, Shunpu Li","doi":"10.1088/1361-6528/ad83d8","DOIUrl":"10.1088/1361-6528/ad83d8","url":null,"abstract":"<p><p>In this work we present self-organized regular patterns in a solution system through uphill-diffusion. Micrometer thick organic semiconductor solution is sandwiched between a substrate and cover-plate. Self-assembled regular patterns can be observed on the substrate after solvent evaporation. Different micro-patterns and pattern defects were displayed and analyzed. Mechanisms of defect formation, mode selection process during patten generation, and pattern sedimentation onto substrate from solution were proposed. Organic thin film transistors were fabricated with the assembled line patterns which demonstrate a promising way to produce patterned micro/nano materials.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanotechnologyPub Date : 2024-10-22DOI: 10.1088/1361-6528/ad857c
D E Yıldız, H H Gullu, M Yıldırım, N A Morley, R Sahingoz
{"title":"Novel Al/CoFe/<i>p</i>-Si and Al/NiFe/<i>p</i>-Si MS-type photodiode for sensing.","authors":"D E Yıldız, H H Gullu, M Yıldırım, N A Morley, R Sahingoz","doi":"10.1088/1361-6528/ad857c","DOIUrl":"10.1088/1361-6528/ad857c","url":null,"abstract":"<p><p>CoFe and NiFe are used in the construction of Si-based metal-semiconductor-type photodiodes. Thin film layers are sputtered onto the<i>p</i>-Si surface where Al metal contacts are deposited using the thermal evaporation technique. Film characteristics of the layers are investigated with respect to the crystalline structure and surface morphology. Their electrical and optical properties are investigated using dark and illuminated current-voltage measurements. When these two diodes are compared, Al/NiFe/<i>p</i>-Si exhibits better rectification properties than Al/CoFe/<i>p</i>-Si diode. There is also a high barrier height where these values for both diodes increase with illumination. According to the current-voltage analysis, the existence of an interlayer causes a deviation in diode ideality. In addition, the response to bias voltage, the derivation of electrical parameters, and the light sensitivity of diodes are evaluated using current-voltage measurements under different illumination intensities and also transient photosensitive characteristics.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultra-high PDCR(>10<sup>9</sup>) of vacuum-UV photodetector based on Al-doped Ga<sub>2</sub>O<sub>3</sub>microbelts.","authors":"Zhi-Pin Hu, Hai-Feng Chen, Zi-Jie Ding, Qin Lu, Li-Jun Li, Xiang-Tai Liu, Shao-Qing Wang, Zhan Wang, Yi-Fan Jia","doi":"10.1088/1361-6528/ad84ff","DOIUrl":"10.1088/1361-6528/ad84ff","url":null,"abstract":"<p><p>Al-doped Ga<sub>2</sub>O<sub>3</sub>microbelts with widths ranging from 20 to 154<i>μ</i>m and lengths up to 2 mm were grown using carbothermal reduction. Based on these ultra-wide microbelts, single-microbelt (37<i>μ</i>m wide) and double-microbelts(38<i>μ</i>m/42<i>μ</i>m wide) metal-semiconductor-metal photoconductive ultraviolet (UV) detectors PDs were fabricated and their optoelectronic performances were investigated at Vacuum-UV (VUV) wavelengths of 185 nm. Under irradiation of 185 nm, the Al-doped Ga<sub>2</sub>O<sub>3</sub>PD has a very-high photocurrent (<i>I</i><sub>ph</sub>) of 192.07<i>μ</i>A and extremely low dark current (<i>I</i><sub>d</sub>) of 156 fA at 10 V, and presents a ultra-high light-to-dark current ratio of 1.23 × 10<sup>9</sup>. The responsivity (<i>R</i>), external quantum efficiency (EQE), and detectivity (<i>D*</i>) of the double-microbelts detector device were 1920 A W<sup>-1</sup>, 9.36 × 10<sup>5</sup>%, and 8.6 × 10<sup>16</sup>Jones, respectively. Since the bandgap of the Al-doped microbelts becomes wider, and the fabricated detector has weaker sensitivity to radiation in the 254/365 nm wavelengths. Compared with the 254 nm and 365 nm UV cases, the devices under 185 nm VUV show the excellent high selectivity ratios of 1.47 × 10<sup>6</sup>and 1.7× 10<sup>7</sup>, respectively. This paper should provide a new insight on the VUV photodetectors utilizing Ga<sub>2</sub>O<sub>3</sub>microbelts.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}