Preparation of aggregation-free ZnPc-doped nanophotosensitizers for highly efficient photodynamic therapy.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yafei Zhang, Bingyang Bo, Jinglei Qin, Bei Liu, Hong-Shang Peng
{"title":"Preparation of aggregation-free ZnPc-doped nanophotosensitizers for highly efficient photodynamic therapy.","authors":"Yafei Zhang, Bingyang Bo, Jinglei Qin, Bei Liu, Hong-Shang Peng","doi":"10.1088/1361-6528/adb437","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc phthalocyanine (ZnPc), a promising second-generation photosensitizer, suffers from decreased quantum yield of singlet oxygen due to poor water solubility and prone-to-aggregation nature in both physiological environment and solid matrix. To address this issue, in this work we reported a simple ligand-assisted reprecipitation method to prepare aggregation-free ZnPc-doped nanoparticles (NPs). Specifically, a short-chain ligand hexylamine was introduced to coordinate with ZnPc during reprecipitation, so that to alleviate ZnPc aggregation in the polymeric nanomatrix. As a consequence, the as-prepared ZnPc-loaded NPs with an optimal loading content of 4 wt.% acquired a high singlet oxygen quantum yield (Φ<sub>Δ</sub>) of 0.5, which was comparable to that of ZnPc monomer (Φ<sub>Δ</sub>= 0.55). Moreover, 10 wt.% ZnPc-loaded NPs could still retain a singlet oxygen quantum yield of 0.38. Taking advantage of the aggregation-free nano-photosensitizers (NPSs), efficient photodynamic therapy effect was achieved on HeLa cells upon 660 nm photo-irradiation with an ultra-low light dose (1.8 J cm<sup>-2</sup>). This study not only presented a high efficient ZnPc-based NPS, but also proposed a new strategy to reduce the aggregation of metal complex in solid matrix through ligand coordination.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb437","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc phthalocyanine (ZnPc), a promising second-generation photosensitizer, suffers from decreased quantum yield of singlet oxygen due to poor water solubility and prone-to-aggregation nature in both physiological environment and solid matrix. To address this issue, in this work we reported a simple ligand-assisted reprecipitation method to prepare aggregation-free ZnPc-doped nanoparticles (NPs). Specifically, a short-chain ligand hexylamine was introduced to coordinate with ZnPc during reprecipitation, so that to alleviate ZnPc aggregation in the polymeric nanomatrix. As a consequence, the as-prepared ZnPc-loaded NPs with an optimal loading content of 4 wt.% acquired a high singlet oxygen quantum yield (ΦΔ) of 0.5, which was comparable to that of ZnPc monomer (ΦΔ= 0.55). Moreover, 10 wt.% ZnPc-loaded NPs could still retain a singlet oxygen quantum yield of 0.38. Taking advantage of the aggregation-free nano-photosensitizers (NPSs), efficient photodynamic therapy effect was achieved on HeLa cells upon 660 nm photo-irradiation with an ultra-low light dose (1.8 J cm-2). This study not only presented a high efficient ZnPc-based NPS, but also proposed a new strategy to reduce the aggregation of metal complex in solid matrix through ligand coordination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信