Mitigating shuttle effect of the Li||S battery with Se-deficient commercial MoSe2flakes.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yao He, Lijing Wang, Sheng Yang, Shaowei Zhang, Hongfang Du, Dandan Cui, Liangxu Lin
{"title":"Mitigating shuttle effect of the Li||S battery with Se-deficient commercial MoSe<sub>2</sub>flakes.","authors":"Yao He, Lijing Wang, Sheng Yang, Shaowei Zhang, Hongfang Du, Dandan Cui, Liangxu Lin","doi":"10.1088/1361-6528/adb1ee","DOIUrl":null,"url":null,"abstract":"<p><p>In lithium-sulfur batteries (LSBs), the dissolution of lithium polysulfides (LiPSs) triggers the shuttle effect to lose active materials irreversibly, leading to the fast deterioration of electrochemical performance. Rational designs on the separator membrane could mitigate the shuttle effect. However, the development of efficient separators economically remains a challenging task, aggressively limiting the commercial use of LSBs. This work reports the engineering of commercial molybdenum diselenides (MoSe2) flakes to mitigate the shuttle effect of LSBs, by forming rich Se vacancies via a potassium (K) intercalation and de-intercalation reaction. The Se vacancy in MoSex flakes significantly enhances the adsorption capacity of LiPSs and accelerates the Li+ diffusion kinetics, thereby alleviating the shuttle effect and enhancing the energy storage performance. This directly improves the energy storage performance of the LSBs by incorporating the MoSex flakes into the separator membrane, giving a high capacity retention rate of 94.6% at 2C after 500 cycles, with a reversible specific capacity as high as 452 mAh g-1. This work offers a new strategy for the design and synthesis of vacancy rich transition metal chalcogenides for high-performance LSBs and beyond.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb1ee","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In lithium-sulfur batteries (LSBs), the dissolution of lithium polysulfides (LiPSs) triggers the shuttle effect to lose active materials irreversibly, leading to the fast deterioration of electrochemical performance. Rational designs on the separator membrane could mitigate the shuttle effect. However, the development of efficient separators economically remains a challenging task, aggressively limiting the commercial use of LSBs. This work reports the engineering of commercial molybdenum diselenides (MoSe2) flakes to mitigate the shuttle effect of LSBs, by forming rich Se vacancies via a potassium (K) intercalation and de-intercalation reaction. The Se vacancy in MoSex flakes significantly enhances the adsorption capacity of LiPSs and accelerates the Li+ diffusion kinetics, thereby alleviating the shuttle effect and enhancing the energy storage performance. This directly improves the energy storage performance of the LSBs by incorporating the MoSex flakes into the separator membrane, giving a high capacity retention rate of 94.6% at 2C after 500 cycles, with a reversible specific capacity as high as 452 mAh g-1. This work offers a new strategy for the design and synthesis of vacancy rich transition metal chalcogenides for high-performance LSBs and beyond. .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信