NanophotonicsPub Date : 2025-04-01DOI: 10.1515/nanoph-2024-0605
Nicholas Rivera
{"title":"New opportunities for creating quantum states of light and matter with intense laser fields","authors":"Nicholas Rivera","doi":"10.1515/nanoph-2024-0605","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0605","url":null,"abstract":"Nonlinear dynamics provide an indispensable resource for creating quantum states of light, as well as other bosonic systems. Seminal work using second- and third-order nonlinear optical crystals, cavity quantum electrodynamics, and superconducting circuits, have enabled generating squeezed states, as well as various non-Gaussian quantum states (e.g., single photons, cat states) at both infrared and microwave frequencies. Nevertheless, it remains challenging to generate quantum states of light in broad portions of the electromagnetic spectrum: for example, at terahertz frequencies and at ultraviolet and X-ray frequencies. In this Perspective, I discuss a variety of emerging material platforms, as well as emerging theoretical and experimental tools, which enable overcoming these challenges. The main argument of this Perspective is that advances in driving nonlinear dynamics of material excitations, will enable generating quantum states of these material excitations as well as quantum states of light at new frequency ranges. I will further argue that in order to realize much of the promise of this nascent field, there is a need for innovation in the laser systems used to drive these nonlinear dynamics: specifically, innovations in realizing high-power laser sources that have very low noise, having quantum statistics similar to coherent states of light which describe lower intensity laser systems. I will highlight some experimental and theoretical work, in understanding quantum noise dynamics in complex laser systems, that can address these challenges.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"36 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143745033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-04-01DOI: 10.1515/nanoph-2025-0015
Wen Xing, Changke Bu, Xiaoyi Zhang, Duk-Yong Choi, Yang Li, Wenjing Yue, Jiaqi Cheng, Zhancheng Li, Shuqi Chen, Song Gao
{"title":"Metasurface-enabled optical encryption and steganography with enhanced information security","authors":"Wen Xing, Changke Bu, Xiaoyi Zhang, Duk-Yong Choi, Yang Li, Wenjing Yue, Jiaqi Cheng, Zhancheng Li, Shuqi Chen, Song Gao","doi":"10.1515/nanoph-2025-0015","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0015","url":null,"abstract":"Metasurfaces have attracted considerable interest in optical encryption due to their remarkable ability to manipulate light at subwavelength scales, however the aspect of encryption security remains an area requiring deeper exploration. Here, we propose and demonstrate metasurface-enabled optical encryption and steganography that provides dual-layer information protection. A secret information is embedded within multiple carrier images using a run-length encoding algorithm, dispersing the data to safeguard it against direct observation and brute-force attacks, thereby establishing the first layer of security. The second layer is achieved by encoding the multiple carrier images onto a silicon metasurface, leveraging light wavelength and polarization to generate diverse optical keys post-steganography. To validate the proposed scheme, several silicon metasurface samples are fabricated and characterized in the visible spectrum. By adjusting various combinations of optical keys, three encrypted carrier images are retrieved with high fidelity and negligible crosstalk, and the concealed secret information is successfully extracted through a corresponding decryption algorithm. The proposed approach enhances optical information security at the hardware level, making it less susceptible to leakage. It is anticipated that the demonstrated advancement will hold significant potential for applications in information security and optical anti-counterfeiting.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"34 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-29DOI: 10.1515/nanoph-2024-0730
Tae-Yun Lee, Hansol Lee, Heonsu Jeon
{"title":"Colloidal-quantum-dot nanolaser oscillating at a bound-state-in-the-continuum with planar surface topography for a high Q-factor","authors":"Tae-Yun Lee, Hansol Lee, Heonsu Jeon","doi":"10.1515/nanoph-2024-0730","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0730","url":null,"abstract":"Solution-based optical gain materials offer a cost-effective path to coherent light sources. Further, bound states in the continuum (BICs) have garnered great interest owing to their diverging quality (<jats:italic>Q</jats:italic>) factors. Therefore, a hybrid of these – a solution-based material for optical gain and a BIC structure for the lasing mode – should constitute an ideal form factor for low-cost and low-threshold nanolasers. However, the nonuniform surface topography induced during the thin-film formation of a solution-based material, especially on top of a prepatterned substrate, can easily disrupt the structural symmetry required for a high-<jats:italic>Q</jats:italic> BIC, resulting in a degradation of <jats:italic>Q</jats:italic>. Thus, in this study, a simple surface-flattening technique utilizing a soft and flexible squeegee was applied, which realized the planar surface topography crucial for preserving the high <jats:italic>Q</jats:italic> promised by the BIC and achieving low-threshold lasing. We fabricated BIC nanolasers by incorporating colloidal quantum dots (CQDs) for optical gain into a two-dimensional photonic crystal backbone layer composed of Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>. By leveraging the unique properties of the BIC mode with a well-ordered surface, our CQD-based BIC laser exhibited a lasing threshold as low as 10.5 kW/cm<jats:sup>2</jats:sup>, which is significantly lower than those reported in previous studies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"93 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-29DOI: 10.1515/nanoph-2024-0663
Shahriar Esmaeili, Navid Rajil, Ayla Hazrathosseini, Benjamin W. Neuman, Masfer H. Alkahtani, Dipankar Sen, Qiang Hu, Hung-Jen Wu, Zhenhuan Yi, Robert W. Brick, Alexei V. Sokolov, Philip R. Hemmer, Marlan O. Scully
{"title":"Quantum-enhanced detection of viral cDNA via luminescence resonance energy transfer using upconversion and gold nanoparticles","authors":"Shahriar Esmaeili, Navid Rajil, Ayla Hazrathosseini, Benjamin W. Neuman, Masfer H. Alkahtani, Dipankar Sen, Qiang Hu, Hung-Jen Wu, Zhenhuan Yi, Robert W. Brick, Alexei V. Sokolov, Philip R. Hemmer, Marlan O. Scully","doi":"10.1515/nanoph-2024-0663","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0663","url":null,"abstract":"The COVID-19 pandemic has profoundly impacted global economies and healthcare systems, revealing critical vulnerabilities in both. In response, our study introduces a sensitive and highly specific detection method for cDNA, leveraging Luminescence Resonance Energy Transfer (LRET) between upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs), and achieves a detection limit of 242 fM for SARS-CoV-2 cDNA. This innovative sensing platform utilizes UCNPs conjugated with one primer and AuNPs with another, targeting the 5′ and 3′ ends of the SARS-CoV-2 cDNA, respectively, enabling precise differentiation of mismatched cDNA sequences and significantly improving detection specificity. Through rigorous experimental analysis, we established a quenching efficiency range from 10.4 % to 73.6 %, with an optimal midpoint of 42 %, thereby demonstrating the superior sensitivity of our method. Our work uses SARS-CoV-2 cDNA as a model system to demonstrate the potential of our LRET-based detection method. This proof-of-concept study highlights the adaptability of our platform for future diagnostic applications. Instrumental validation confirms the synthesis and formation of AuNPs, addressing the need for experimental verification of the preparation of nanomaterial. Our comparative analysis with existing SARS-CoV-2 detection methods revealed that our approach provides a low detection limit and high specificity for target cDNA sequences, underscoring its potential for targeted COVID-19 diagnostics. This study demonstrates the superior sensitivity and adaptability of using UCNPs and AuNPs for cDNA detection, offering significant advances in rapid, accessible diagnostic technologies. Our method, characterized by its low detection limit and high precision, represents a critical step forward in developing next-generation biosensors for managing current and future viral outbreaks. By adjusting primer sequences, this platform can be tailored to detect other pathogens, contributing to the enhancement of global healthcare responsiveness and infectious disease control.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"12 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-29DOI: 10.1515/nanoph-2025-0033
Zhaoqi Ji, Chunlei Jiang, Peng Chen, Linzhi Yao, Minghui Zhang, Qizan Shi, Cun Zhao, Xiufang Wang, Yu Sun, Taiji Dong
{"title":"Radial rotation of cell-pair under beam mode coupling effect of microcavity cascaded single fiber optical tweezers","authors":"Zhaoqi Ji, Chunlei Jiang, Peng Chen, Linzhi Yao, Minghui Zhang, Qizan Shi, Cun Zhao, Xiufang Wang, Yu Sun, Taiji Dong","doi":"10.1515/nanoph-2025-0033","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0033","url":null,"abstract":"This article presents a control method for radial cell-pair rotations using a single-fiber manipulation technique that combines microcavity cascade optical tweezers with optical fiber mode coupling technology. It explores the mechanisms of cell manipulation under the influence of mode coupling and capillary fluid forces. By controlling the angle of fiber twisting and utilizing the birefringence effect along with the principle of beam mode coupling, it is possible to achieve precise and regular variations in the energy of the LP21 mode beam spot, thereby altering the magnitude and direction of the forces acting on the cell-pair, which induces a tendency for rotational motion. The microcavity cascade optical tweezers provide a small capillary fluid force and serve to isolate the cell-pair from the external environment, allowing it to respond to changes in beam spot energy within a stable microcavity space, thus enabling controllable rotations in both direction and angle. The combination of microcavity cascade optical tweezers with beam mode coupling technology achieves, for the first time, radial cell-pair rotations driven by a single fiber, which holds significant implications for the study of polarized cell migration as well as the investigation of tissue fluidity and connectivity dynamics in cancer prediction.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"49 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuously adjustable hollow beam for ultrafast laser fabrication of size-controllable nanoparticles","authors":"Zhi Wang, Peng Yi, Andong Wang, Taoyong Li, Wentao Chen, Xiaolin Qi, Xiaowei Li","doi":"10.1515/nanoph-2024-0690","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0690","url":null,"abstract":"The focused vortex beam generates a hollow beam, which has been widely used for size-controlled nanoparticle formation on various materials. However, the size variation of the vortex beam is limited by the integral order of the 2π phase wrap, while the waste is caused by the large side lobe around the center. In this study, we propose a method for hollow beam generation by splitting a femtosecond laser and imparting opposite phases to the outer annular region and the central Gaussian region. After focusing, these two regions overlap at the focal spot, resulting in a hollow beam due to phase cancellation. By modulating the relative dimensions of these two regions, the hollow center can be continuously varied. When such a hollow beam is used for surface processing, the thermal capillary effect facilitates the convergence of the molten material toward the center, ultimately leading to the formation of nanoparticles. This ability to control size allows precise control of nanoparticle size with a diameter range from 140 nm to 940 nm. This method holds great promise for guiding research into nanoparticle properties that are influenced by size effects.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"13 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-28DOI: 10.1515/nanoph-2024-0712
Christophe Finot, Martin Rochette
{"title":"From signal processing of telecommunication signals to high pulse energy lasers: the Mamyshev regenerator case","authors":"Christophe Finot, Martin Rochette","doi":"10.1515/nanoph-2024-0712","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0712","url":null,"abstract":"We look back at many challenges as well as unexpected successes encountered by the Mamyshev optical regenerator, which combines spectral broadening from self-phase modulation followed by offset bandpass filtering. Initially developed for ultra-fast all-optical processing of optical telecommunications signals, the Mamyshev regenerator has become most useful in the field of high-power fiber lasers. Implemented from optical fibers, the Mamyshev regenerator is compatible with integration on an optical chip, and excellent prospects are open for this polyvalent technology.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"17 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-28DOI: 10.1515/nanoph-2025-0050
Xin Yu Li, Long Chen, Shi Long Qin, Ke Zhan Zhao, Zi Xuan Cai, Qiao Cong Peng, Qian Ma, Jian Wei You, Tie Jun Cui
{"title":"BioMeta: modular reprogrammable metasurface for noninvasive human respiration monitoring","authors":"Xin Yu Li, Long Chen, Shi Long Qin, Ke Zhan Zhao, Zi Xuan Cai, Qiao Cong Peng, Qian Ma, Jian Wei You, Tie Jun Cui","doi":"10.1515/nanoph-2025-0050","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0050","url":null,"abstract":"Human vital-sign sensing using electromagnetic wave has emerged as a promising technology for the noninvasive monitoring of individuals’ health status. Here, a modular reprogrammable metasurface system is presented to suppress noise in noninvasive human respiration sensing. The proposed reprogrammable Biological Metasurface (<jats:italic>BioMeta</jats:italic>) provides three-dimensional dynamic control over wavefront shaping and thus can reduce interference from human limb motions. This capability allows the system to acquire health data accurately and reliably and is particularly beneficial in real-world environments where human subjects may change posture or location frequently. Furthermore, the meta-atom in <jats:italic>BioMeta</jats:italic> is modular and detachable, thereby resulting in reusable properties and promoting environmental sustainability. Meanwhile, the characteristics of mechanical control enable <jats:italic>BioMeta</jats:italic> to operate without continuous power supply, thus saving energy to a certain extent. A contactless human respiration sensing prototype based on the proposed <jats:italic>BioMeta</jats:italic> is demonstrated. Experimental results validate that the <jats:italic>BioMeta</jats:italic> system can accurately monitor the breathing of multiple individuals with limb movements by means of time multiplexing, with an average estimation error of 0.5 respiration per minute. The proposed system enhances sensing accuracy and reliability for noninvasive human respiration monitoring, presenting a versatile and environmentally friendly solution for applications like elderly care and disease monitoring.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"35 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-28DOI: 10.1515/nanoph-2024-0703
Giovanni Miano, Loris Maria Cangemi, Carlo Forestiere
{"title":"Quantum emitter interacting with a dispersive dielectric object: a model based on the modified Langevin noise formalism","authors":"Giovanni Miano, Loris Maria Cangemi, Carlo Forestiere","doi":"10.1515/nanoph-2024-0703","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0703","url":null,"abstract":"In this paper, we model the interaction of a quantum emitter with a finite-size dispersive dielectric object in unbounded space within the framework of macroscopic quantum electrodynamics, using the modified Langevin noise formalism. The quantized electromagnetic field consists of two contributions: the medium-assisted field, which accounts for the electromagnetic field generated by the noise polarization currents of the dielectric, and the scattering-assisted field, which takes into account the electromagnetic field incoming from infinity and scattered by the dielectric. We show that the emitter couples to two distinct bosonic reservoirs: a medium-assisted reservoir and a scattering-assisted reservoir, each characterized by its own spectral density. We then use emitter-centered modes to reduce the degrees of freedom of both reservoirs. Eventually, we identify the conditions under which the electromagnetic environment composed of these two reservoirs can be effectively replaced by a single bosonic reservoir so that the reduced time evolution of the quantum emitter remains unchanged. In particular, when the initial states of the medium- and scattering-assisted reservoirs are thermal quantum states at the same temperature, we find that a single bosonic bath with a spectral density equal to the sum of the medium- and scattering-assisted spectral densities is equivalent to the original electromagnetic environment.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"59 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanophotonicsPub Date : 2025-03-28DOI: 10.1515/nanoph-2025-0007
Yeonghoon Jin, Teng Qu, Siddharth Kumar, Nicola Kubzdela, Cheng-Chia Tsai, Tai-De Li, Shriram Ramanathan, Nanfang Yu, Mikhail A. Kats
{"title":"Large tuning of the optical properties of nanoscale NdNiO3 via electron doping","authors":"Yeonghoon Jin, Teng Qu, Siddharth Kumar, Nicola Kubzdela, Cheng-Chia Tsai, Tai-De Li, Shriram Ramanathan, Nanfang Yu, Mikhail A. Kats","doi":"10.1515/nanoph-2025-0007","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0007","url":null,"abstract":"We synthesized crystalline films of neodymium nickel oxide (NdNiO<jats:sub>3</jats:sub>), a perovskite quantum material, switched the films from a metal phase (intrinsic) into an insulator phase (electron-doped) by field-driven lithium-ion intercalation, and characterized their structural and optical properties. Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) showed that the intercalation process resulted in a gradient of the dopant concentration along the thickness direction of the films, turning the films into insulator–metal bilayers. We used variable-angle spectroscopic ellipsometry to measure the complex refractive indices of the metallic and insulating phases of NdNiO<jats:sub>3</jats:sub>. The insulator phase has a refractive index of <jats:italic>n</jats:italic> ∼ 2 and low absorption in the visible and near-infrared, and analysis of the complex refractive indices indicated that the band gap of the insulating phase is roughly 3–4 eV. Electrical control of the optical band gap, with corresponding large changes to the optical refractive indices, creates new opportunities for tunable optics.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"132 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}