Martin Poblet, Christian Vinther Bertelsen, David Alonso-Tomás, Rahul Singh, Elena López-Aymerich, Jens Goldschmidt, Katrin Schmitt, Maria Dimaki, Winnie E. Svendsen, Albert Romano-Rodríguez, Daniel Navarro-Urrios
{"title":"用于片上光子集成的SiO2/Si复合柱型光机械晶体","authors":"Martin Poblet, Christian Vinther Bertelsen, David Alonso-Tomás, Rahul Singh, Elena López-Aymerich, Jens Goldschmidt, Katrin Schmitt, Maria Dimaki, Winnie E. Svendsen, Albert Romano-Rodríguez, Daniel Navarro-Urrios","doi":"10.1515/nanoph-2025-0232","DOIUrl":null,"url":null,"abstract":"One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate. Integrated waveguides are engineered to support TM-like modes, which enable optimized coupling to the 1D-PhC optical cavity modes via evanescent wave interaction. Finite element method simulations and experimental analyses reveal that these cavities achieve relatively high optical quality factors (<jats:italic>Q</jats:italic> ∼ 4 × 10<jats:sup>3</jats:sup>). In addition, both simulated and experimentally measured mechanical vibrational frequencies show large optomechanical coupling rates exceeding 1 MHz for the fundamental cantilever-like modes. By tuning the separation between the 1D-PhC and the waveguide, we achieve optimal optical coupling conditions that enable the transduction of thermally activated mechanical modes across a broad frequency range – from tens to several hundreds of MHz. This enhanced accessibility and efficiency in mechanical motion transduction significantly strengthens the viability of established microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) technologies based on nanowires, nanorods, and related structures, particularly in applications such as force sensing and biosensing.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"111 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid SiO2/Si pillar-based optomechanical crystals for on-chip photonic integration\",\"authors\":\"Martin Poblet, Christian Vinther Bertelsen, David Alonso-Tomás, Rahul Singh, Elena López-Aymerich, Jens Goldschmidt, Katrin Schmitt, Maria Dimaki, Winnie E. Svendsen, Albert Romano-Rodríguez, Daniel Navarro-Urrios\",\"doi\":\"10.1515/nanoph-2025-0232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate. Integrated waveguides are engineered to support TM-like modes, which enable optimized coupling to the 1D-PhC optical cavity modes via evanescent wave interaction. Finite element method simulations and experimental analyses reveal that these cavities achieve relatively high optical quality factors (<jats:italic>Q</jats:italic> ∼ 4 × 10<jats:sup>3</jats:sup>). In addition, both simulated and experimentally measured mechanical vibrational frequencies show large optomechanical coupling rates exceeding 1 MHz for the fundamental cantilever-like modes. By tuning the separation between the 1D-PhC and the waveguide, we achieve optimal optical coupling conditions that enable the transduction of thermally activated mechanical modes across a broad frequency range – from tens to several hundreds of MHz. This enhanced accessibility and efficiency in mechanical motion transduction significantly strengthens the viability of established microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) technologies based on nanowires, nanorods, and related structures, particularly in applications such as force sensing and biosensing.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0232\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0232","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hybrid SiO2/Si pillar-based optomechanical crystals for on-chip photonic integration
One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate. Integrated waveguides are engineered to support TM-like modes, which enable optimized coupling to the 1D-PhC optical cavity modes via evanescent wave interaction. Finite element method simulations and experimental analyses reveal that these cavities achieve relatively high optical quality factors (Q ∼ 4 × 103). In addition, both simulated and experimentally measured mechanical vibrational frequencies show large optomechanical coupling rates exceeding 1 MHz for the fundamental cantilever-like modes. By tuning the separation between the 1D-PhC and the waveguide, we achieve optimal optical coupling conditions that enable the transduction of thermally activated mechanical modes across a broad frequency range – from tens to several hundreds of MHz. This enhanced accessibility and efficiency in mechanical motion transduction significantly strengthens the viability of established microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) technologies based on nanowires, nanorods, and related structures, particularly in applications such as force sensing and biosensing.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.