Kristians Draguns, Vidar Flodgren, David Winge, Alfredo Serafini, Aigars Atvars, Janis Alnis, Anders Mikkelsen
{"title":"Neural network connectivity by optical broadcasting between III-V nanowires","authors":"Kristians Draguns, Vidar Flodgren, David Winge, Alfredo Serafini, Aigars Atvars, Janis Alnis, Anders Mikkelsen","doi":"10.1515/nanoph-2025-0035","DOIUrl":null,"url":null,"abstract":"Biological neural network functionality depends on the vast number of connections between nodes, which can be challenging to implement artificially. One radical solution is to replace physical wiring with broadcasting of signals between the artificial neurons. We explore an implementation of this concept by light emitting/receiving III-V semiconductor nanowire neurons in a quasi-2D waveguide. They broadcast light in anisotropic patterns and specific regions in the nanowires are sensitised to exciting and inhibiting light signals. Weights of connections between nodes can then be tailored using the geometric light absorption/emission patterns. Through detailed simulations, we determine the connection strength based on rotation and separation between the nanowires. Our findings reveal that complex weight distributions are possible, indicating that specific neuron geometric patterns can achieve highly variable connectivity as needed for neural networks. An important design parameter is matching the wavelength to the specific physical dimensions of the network. To demonstrate applicability, we simulate a reservoir neural network using a hexagonal pattern of nanowires with random angular orientations, displaying its ability to perform chaotic time series prediction. The design is compatible with integration on Si substrates and can be extended to other nanophotonic components.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"10 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0035","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological neural network functionality depends on the vast number of connections between nodes, which can be challenging to implement artificially. One radical solution is to replace physical wiring with broadcasting of signals between the artificial neurons. We explore an implementation of this concept by light emitting/receiving III-V semiconductor nanowire neurons in a quasi-2D waveguide. They broadcast light in anisotropic patterns and specific regions in the nanowires are sensitised to exciting and inhibiting light signals. Weights of connections between nodes can then be tailored using the geometric light absorption/emission patterns. Through detailed simulations, we determine the connection strength based on rotation and separation between the nanowires. Our findings reveal that complex weight distributions are possible, indicating that specific neuron geometric patterns can achieve highly variable connectivity as needed for neural networks. An important design parameter is matching the wavelength to the specific physical dimensions of the network. To demonstrate applicability, we simulate a reservoir neural network using a hexagonal pattern of nanowires with random angular orientations, displaying its ability to perform chaotic time series prediction. The design is compatible with integration on Si substrates and can be extended to other nanophotonic components.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.