Kelan Chen, Jitao Ji, Xueyun Li, Zhiyuan Lin, Zhizhang Wang, Jiacheng Sun, Jian Li, Chunyu Huang, Pan Dai, Jitao Cao, Xiangfei Chen, Shining Zhu, Tao Li
{"title":"Frequency modulated continuous wave LiDAR with expanded field-of-view based on polarization-splitting metasurface","authors":"Kelan Chen, Jitao Ji, Xueyun Li, Zhiyuan Lin, Zhizhang Wang, Jiacheng Sun, Jian Li, Chunyu Huang, Pan Dai, Jitao Cao, Xiangfei Chen, Shining Zhu, Tao Li","doi":"10.1515/nanoph-2025-0183","DOIUrl":null,"url":null,"abstract":"Frequency modulated continuous wave (FMCW) light detection and ranging (LiDAR) has recently become a research hotspot in the fields of autonomous driving and intelligent perception due to its high-precision ranging and velocity measurement capabilities. However, the existing LiDAR systems are usually challenged in expanding the field-of-view (FOV), which often comes at the expense of beam quality and degrades the detection accuracy and signal-to-noise ratio. On the other hand, the complexity of data processing algorithms may introduce significant measurement inaccuracies, potentially leading to substantial deviations in the final results. These two constraints limit the performance of LiDAR in complex scenarios. To address these issues, this paper proposes a new architecture for FMCW LiDAR that employs a geometric metasurface as a polarization splitter for expanded FOV of beam steering. With the combination of mechanical scanning mirror and metasurface, the scanning FOV has been successfully enlarged from 64° × 20° to 64° × 40°. Simultaneously, millimeter-level precision was achieved in distance measurement, along with an average relative error of 9 mm/s in velocity measurement, which confirms stable and precise system performance. This approach not only broadens the scanning range but also preserves the measurement accuracy of FMCW technology. This paper innovatively combines polarization beam-splitting metasurface with FMCW technology to achieve high-precision measurement over a wide field of view, providing a promising new technical pathway for the technological evolution of future LiDAR systems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"12 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0183","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Frequency modulated continuous wave (FMCW) light detection and ranging (LiDAR) has recently become a research hotspot in the fields of autonomous driving and intelligent perception due to its high-precision ranging and velocity measurement capabilities. However, the existing LiDAR systems are usually challenged in expanding the field-of-view (FOV), which often comes at the expense of beam quality and degrades the detection accuracy and signal-to-noise ratio. On the other hand, the complexity of data processing algorithms may introduce significant measurement inaccuracies, potentially leading to substantial deviations in the final results. These two constraints limit the performance of LiDAR in complex scenarios. To address these issues, this paper proposes a new architecture for FMCW LiDAR that employs a geometric metasurface as a polarization splitter for expanded FOV of beam steering. With the combination of mechanical scanning mirror and metasurface, the scanning FOV has been successfully enlarged from 64° × 20° to 64° × 40°. Simultaneously, millimeter-level precision was achieved in distance measurement, along with an average relative error of 9 mm/s in velocity measurement, which confirms stable and precise system performance. This approach not only broadens the scanning range but also preserves the measurement accuracy of FMCW technology. This paper innovatively combines polarization beam-splitting metasurface with FMCW technology to achieve high-precision measurement over a wide field of view, providing a promising new technical pathway for the technological evolution of future LiDAR systems.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.