Nature Cell Biology最新文献

筛选
英文 中文
Navigating human embryogenesis through tailored model selection 通过量身定制的模型选择为人类胚胎发育导航
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01525-5
Berna Sozen
{"title":"Navigating human embryogenesis through tailored model selection","authors":"Berna Sozen","doi":"10.1038/s41556-024-01525-5","DOIUrl":"10.1038/s41556-024-01525-5","url":null,"abstract":"Rapid advances in stem cell and bioengineering technologies have sparked a revolution in developmental biology, with stem cell-based embryo models emerging as crucial tools to uncover the intricacies of human embryogenesis. However, making progress relies on precisely posing our questions and selecting our models.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1819-1821"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell state transitions are decoupled from cell division during early embryo development 早期胚胎发育过程中细胞状态转换与细胞分裂脱钩
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-11-08 DOI: 10.1038/s41556-024-01546-0
Kalki Kukreja, Bill Z. Jia, Sean E. McGeary, Nikit Patel, Sean G. Megason, Allon M. Klein
{"title":"Cell state transitions are decoupled from cell division during early embryo development","authors":"Kalki Kukreja, Bill Z. Jia, Sean E. McGeary, Nikit Patel, Sean G. Megason, Allon M. Klein","doi":"10.1038/s41556-024-01546-0","DOIUrl":"10.1038/s41556-024-01546-0","url":null,"abstract":"As tissues develop, cells divide and differentiate concurrently. Conflicting evidence shows that cell division is either dispensable or required for formation of cell types. Here, to determine the role of cell division in differentiation, we arrested the cell cycle in zebrafish embryos using two independent approaches and profiled them at single-cell resolution. We show that cell division is dispensable for differentiation of all embryonic tissues from early gastrulation to the end of segmentation. However, arresting cell division does slow down differentiation in some cell types, and it induces global stress responses. While differentiation is robust to blocking cell division, the proportions of cells across cell states are not, but show evidence of partial compensation. This work clarifies our understanding of the role of cell division in development and showcases the utility of combining embryo-wide perturbations with single-cell RNA sequencing to uncover the role of common biological processes across multiple tissues. Kukreja et al. show that blocking cell division in zebrafish does not affect differentiation of major cell types during gastrulation and segmentation, but it does decelerate differentiation of particular cell types and skews their proportions.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2035-2045"},"PeriodicalIF":17.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spermidine mediates acetylhypusination of RIPK1 to suppress diabetes onset and progression 精胺介导 RIPK1 乙酰化,抑制糖尿病的发生和发展
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-11-07 DOI: 10.1038/s41556-024-01540-6
Tian Zhang, Weixin Fu, Haosong Zhang, Jianlong Li, Beizi Xing, Yuping Cai, Mengmeng Zhang, Xuheng Liu, Chunting Qi, Lihui Qian, Xinbo Hu, Hua Zhu, Shuailong Yang, Min Zhang, Jianping Liu, Ganquan Li, Yang Li, Rong Xiang, Zhengqiang Qi, Junhao Hu, Ying Li, Chengyu Zou, Qin Wang, Xia Jin, Rui Pang, Peiying Li, Junli Liu, Yaoyang Zhang, Zhaoyin Wang, Zheng-Jiang Zhu, Bing Shan, Junying Yuan
{"title":"Spermidine mediates acetylhypusination of RIPK1 to suppress diabetes onset and progression","authors":"Tian Zhang, Weixin Fu, Haosong Zhang, Jianlong Li, Beizi Xing, Yuping Cai, Mengmeng Zhang, Xuheng Liu, Chunting Qi, Lihui Qian, Xinbo Hu, Hua Zhu, Shuailong Yang, Min Zhang, Jianping Liu, Ganquan Li, Yang Li, Rong Xiang, Zhengqiang Qi, Junhao Hu, Ying Li, Chengyu Zou, Qin Wang, Xia Jin, Rui Pang, Peiying Li, Junli Liu, Yaoyang Zhang, Zhaoyin Wang, Zheng-Jiang Zhu, Bing Shan, Junying Yuan","doi":"10.1038/s41556-024-01540-6","DOIUrl":"10.1038/s41556-024-01540-6","url":null,"abstract":"It has been established that N-acetyltransferase (murine NAT1 (mNAT1) and human NAT2 (hNAT2)) mediates insulin sensitivity in type 2 diabetes. Here we show that mNAT1 deficiency leads to a decrease in cellular spermidine—a natural polyamine exhibiting health-protective and anti-ageing effects—but understanding of its mechanism is limited. We identify that mNAT1 and hNAT2 modulate a type of post-translational modification involving acetylated spermidine, which we name acetylhypusination, on receptor-interacting serine/threonine-protein kinase 1 (RIPK1)—a key regulator of inflammation and cell death. Spermidine supplementation decreases RIPK1-mediated cell death and diabetic phenotypes induced by NAT1 deficiency in vivo. Furthermore, insulin resistance and diabetic kidney disease mediated by vascular pathology in NAT1-deficient mice can be blocked by inhibiting RIPK1. Finally, we demonstrate a decrease in spermidine and activation of RIPK1 in the vascular tissues of human patients with diabetes. Our study suggests a role for vascular pathology in diabetes onset and progression and identifies the inhibition of RIPK1 kinase as a potential therapeutic approach for the treatment of type 2 diabetes. Zhang et al. show that the activation of RIPK1 is suppressed by acetylhypusination in a spermidine-dependent manner. Disruption of this axis contributes to RIPK1-mediated vascular pathology to promote insulin resistance and diabetic kidney pathology.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2099-2114"},"PeriodicalIF":17.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spermidine limits diabetes by modulating RIPK1-mediated cell death and inflammation 精胺通过调节 RIPK1 介导的细胞死亡和炎症限制糖尿病的发生
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-11-07 DOI: 10.1038/s41556-024-01542-4
{"title":"Spermidine limits diabetes by modulating RIPK1-mediated cell death and inflammation","authors":"","doi":"10.1038/s41556-024-01542-4","DOIUrl":"10.1038/s41556-024-01542-4","url":null,"abstract":"We establish a mouse model of progressive diabetes induced by conditional NAT1 deficiency in vascular endothelial cells. NAT1 deficiency promotes the activation of RIPK1 owing to a type of post-translational modification mediated by spermidine and deoxyhyupisin synthase termed acetyl-hypusination. Our results suggest that inhibition of RIPK1 could be used to treat type 2 diabetes and vascular inflammation.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2018-2019"},"PeriodicalIF":17.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAT10-mediated mRNA N4-acetylcytidine reprograms serine metabolism to drive leukaemogenesis and stemness in acute myeloid leukaemia NAT10 介导的 mRNA N4-乙酰胞嘧啶重编程丝氨酸代谢,推动急性髓性白血病的白血病生成和干细胞形成
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-11-06 DOI: 10.1038/s41556-024-01548-y
Subo Zhang, Feng Huang, Yushuai Wang, Yifei Long, Yuanpei Li, Yalin Kang, Weiwei Gao, Xiuxin Zhang, Yueting Wen, Yun Wang, Lili Pan, Youmei Xia, Zhoutian Yang, Ying Yang, Hongjie Mo, Baiqing Li, Jiacheng Hu, Yunda Song, Shilin Zhang, Shenghua Dong, Xiao Du, Yingmin Li, Yadi Liu, Wenting Liao, Yijun Gao, Yaojun Zhang, Hongming Chen, Yang Liang, Jianjun Chen, Hengyou Weng, Huilin Huang
{"title":"NAT10-mediated mRNA N4-acetylcytidine reprograms serine metabolism to drive leukaemogenesis and stemness in acute myeloid leukaemia","authors":"Subo Zhang, Feng Huang, Yushuai Wang, Yifei Long, Yuanpei Li, Yalin Kang, Weiwei Gao, Xiuxin Zhang, Yueting Wen, Yun Wang, Lili Pan, Youmei Xia, Zhoutian Yang, Ying Yang, Hongjie Mo, Baiqing Li, Jiacheng Hu, Yunda Song, Shilin Zhang, Shenghua Dong, Xiao Du, Yingmin Li, Yadi Liu, Wenting Liao, Yijun Gao, Yaojun Zhang, Hongming Chen, Yang Liang, Jianjun Chen, Hengyou Weng, Huilin Huang","doi":"10.1038/s41556-024-01548-y","DOIUrl":"10.1038/s41556-024-01548-y","url":null,"abstract":"RNA modification has emerged as an important epigenetic mechanism that controls abnormal metabolism and growth in acute myeloid leukaemia (AML). However, the roles of RNA N4-acetylcytidine (ac4C) modification in AML remain elusive. Here, we report that ac4C and its catalytic enzyme NAT10 drive leukaemogenesis and sustain self-renewal of leukaemic stem cells/leukaemia-initiating cells through reprogramming serine metabolism. Mechanistically, NAT10 facilitates exogenous serine uptake and de novo biosynthesis through ac4C-mediated translation enhancement of the serine transporter SLC1A4 and the transcription regulators HOXA9 and MENIN that activate transcription of serine synthesis pathway genes. We further characterize fludarabine as an inhibitor of NAT10 and demonstrate that pharmacological inhibition of NAT10 targets serine metabolic vulnerability, triggering substantial anti-leukaemia effects both in vitro and in vivo. Collectively, our study demonstrates the functional importance of ac4C and NAT10 in metabolism control and leukaemogenesis, providing insights into the potential of targeting NAT10 for AML therapy. Zhang, Huang, Wang, Long et al. report that NAT10 enhances serine uptake and biosynthesis in an ac4C-dependent mechanism, thereby promoting stemness and progression in acute myeloid leukaemia.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 12","pages":"2168-2182"},"PeriodicalIF":17.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01548-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal coordination of actin regulators generates invasive protrusions in cell–cell fusion 肌动蛋白调节因子的时空协调在细胞-细胞融合中产生侵袭性突起
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-11-01 DOI: 10.1038/s41556-024-01541-5
Yue Lu, Tezin Walji, Benjamin Ravaux, Pratima Pandey, Changsong Yang, Bing Li, Delgermaa Luvsanjav, Kevin H. Lam, Ruihui Zhang, Zhou Luo, Chuanli Zhou, Christa W. Habela, Scott B. Snapper, Rong Li, David J. Goldhamer, David W. Schmidtke, Duojia Pan, Tatyana M. Svitkina, Elizabeth H. Chen
{"title":"Spatiotemporal coordination of actin regulators generates invasive protrusions in cell–cell fusion","authors":"Yue Lu, Tezin Walji, Benjamin Ravaux, Pratima Pandey, Changsong Yang, Bing Li, Delgermaa Luvsanjav, Kevin H. Lam, Ruihui Zhang, Zhou Luo, Chuanli Zhou, Christa W. Habela, Scott B. Snapper, Rong Li, David J. Goldhamer, David W. Schmidtke, Duojia Pan, Tatyana M. Svitkina, Elizabeth H. Chen","doi":"10.1038/s41556-024-01541-5","DOIUrl":"10.1038/s41556-024-01541-5","url":null,"abstract":"Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell–cell fusion. Lu et al. reveal the spatiotemporal coordination between two nucleation-promoting factors, WAVE and N-WASP, and two actin-bundling proteins, dynamin and WIP, in generating invasive protrusions at the mammalian myoblast fusogenic synapse.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1860-1877"},"PeriodicalIF":17.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal dynamics of membrane contact sites 膜接触点的时间动态
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-31 DOI: 10.1038/s41556-024-01539-z
Tomas Knedlik, Marta Giacomello
{"title":"Temporal dynamics of membrane contact sites","authors":"Tomas Knedlik, Marta Giacomello","doi":"10.1038/s41556-024-01539-z","DOIUrl":"10.1038/s41556-024-01539-z","url":null,"abstract":"Cell behaviour changes temporally in response to environmental and metabolic cues. This also applies to membrane contact sites (MCSs), where organelles come into close proximity to perform specific functions, such as lipid transfer or calcium signalling. Here, we discuss how MCSs change over time and whether MCSs exhibit circadian rhythmicity.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1822-1824"},"PeriodicalIF":17.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks 凝聚蛋白复合物寡聚化可维持 DNA 双链断裂处的末端拴系
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-31 DOI: 10.1038/s41556-024-01552-2
Jamie Phipps, Mathias Toulouze, Cécile Ducrot, Rafaël Costa, Clémentine Brocas, Karine Dubrana
{"title":"Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks","authors":"Jamie Phipps, Mathias Toulouze, Cécile Ducrot, Rafaël Costa, Clémentine Brocas, Karine Dubrana","doi":"10.1038/s41556-024-01552-2","DOIUrl":"10.1038/s41556-024-01552-2","url":null,"abstract":"DNA double-strand breaks (DSBs) must be repaired to ensure genome stability. Crucially, DSB-ends must be kept together for timely repair. In Saccharomyces cerevisiae, two pathways mediate DSB end-tethering. One employs the Mre11–Rad50–Xrs2 (MRX) complex to physically bridge DSB-ends. Another requires the conversion of DSB-ends into single-strand DNA (ssDNA) by Exo1, but the bridging proteins are unknown. We uncover that cohesin, its loader and Smc5/6 act with Exo1 to tether DSB-ends. Remarkably, cohesin specifically impaired in oligomerization fails to tether DSB-ends, revealing a function for cohesin oligomerization. In addition to the known importance of sister chromatid cohesion, microscopy-based microfluidic experiments unveil a role for cohesin in repair by ensuring DSB end-tethering. Altogether, our findings demonstrate that oligomerization of cohesin prevents DSB end-separation and promotes DSB repair, revealing a previously undescribed mode of action and role for cohesin in safeguarding genome integrity. Phipps et al. report a cohesin-dependent double-strand break (DSB) DNA end-tethering mechanism that requires Exo1 and SMC5/6 in budding yeast. They show that cohesin oligomerization promotes DSB end-tethering and repair, safeguarding genomic integrity.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 1","pages":"118-129"},"PeriodicalIF":17.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01552-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caspase-2 is a condensate-mediated deubiquitinase in protein quality control Caspase-2是蛋白质质量控制中由凝结物介导的去泛素酶
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-31 DOI: 10.1038/s41556-024-01522-8
Yingwei Ge, Lijie Zhou, Yesheng Fu, Lijuan He, Yi Chen, Dingchang Li, Yuping Xie, Jun Yang, Haitao Wu, Hongmiao Dai, Zhiqiang Peng, Yong Zhang, Shaoqiong Yi, Bo Wu, Xin Zhang, Yangjun Zhang, Wantao Ying, Chun-Ping Cui, Cui Hua Liu, Lingqiang Zhang
{"title":"Caspase-2 is a condensate-mediated deubiquitinase in protein quality control","authors":"Yingwei Ge, Lijie Zhou, Yesheng Fu, Lijuan He, Yi Chen, Dingchang Li, Yuping Xie, Jun Yang, Haitao Wu, Hongmiao Dai, Zhiqiang Peng, Yong Zhang, Shaoqiong Yi, Bo Wu, Xin Zhang, Yangjun Zhang, Wantao Ying, Chun-Ping Cui, Cui Hua Liu, Lingqiang Zhang","doi":"10.1038/s41556-024-01522-8","DOIUrl":"10.1038/s41556-024-01522-8","url":null,"abstract":"Protein ubiquitination plays a critical role in protein quality control in response to cellular stress. The excessive accumulation of ubiquitinated conjugates can be detrimental to cells and is recognized as a hallmark of multiple neurodegenerative diseases. However, an in-depth understanding of how the excessive ubiquitin chains are removed to maintain ubiquitin homeostasis post stress remains largely unclear. Here we found that caspase-2 (CASP2) accumulates in a ubiquitin and proteasome-positive biomolecular condensate, which we named ubstressome, following stress and functions as a deubiquitinase to remove overloaded ubiquitin chains on proteins prone to misfolding. Mechanistically, CASP2 binds to the poly-ubiquitinated conjugates through its allosteric ubiquitin-interacting motif-like region and decreases overloaded ubiquitin chains in a protease-dependent manner to promote substrate degradation. CASP2 deficiency in mice results in excessive accumulation of poly-ubiquitinated TAR DNA-binding protein 43, leading to motor defects. Our findings uncover a stress-evoked deubiquitinating activity of CASP2 in the maintenance of cellular ubiquitin homeostasis, which differs from the well-known roles of caspase in apoptosis and inflammation. These data also reveal unrecognized protein quality control functions of condensates in the removal of stress-induced ubiquitin chains. Ge, Zhou, Fu et al. find caspase-2 accumulates in biomolecular condensates with ubiquitin and proteasomal components and functions as a deubiquitinase following stress. Caspase-2-deficient mice accumulate poly-ubiquitinated TDP-43 and show motor defects.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1943-1957"},"PeriodicalIF":17.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01522-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos H3K27二甲基化动态揭示了小鼠早期胚胎中逐步建立的合成异染色质的过程
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-31 DOI: 10.1038/s41556-024-01553-1
Masahiro Matsuwaka, Mami Kumon, Azusa Inoue
{"title":"H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos","authors":"Masahiro Matsuwaka, Mami Kumon, Azusa Inoue","doi":"10.1038/s41556-024-01553-1","DOIUrl":"10.1038/s41556-024-01553-1","url":null,"abstract":"Facultative heterochromatin is formed by Polycomb repressive complex 2 (PRC2)-deposited H3K27 trimethylation (H3K27me3) and PRC1-deposited H2AK119 mono-ubiquitylation (H2AK119ub1). How it is newly established after fertilization remains unclear. To delineate the establishment kinetics, here we profiled the temporal dynamics of H3K27 dimethylation (H3K27me2), which represents the de novo PRC2 catalysis, in mouse preimplantation embryos. H3K27me2 is newly deposited at CpG islands (CGIs), the paternal X chromosome (Xp) and putative enhancers during the eight-cell-to-morula transition, all of which follow H2AK119ub1 deposition. We found that JARID2, a PRC2.2-specific accessory protein possessing an H2AK119ub1-binding ability, colocalizes with SUZ12 at CGIs and Xp in morula embryos. Upon JARID2 depletion, SUZ12 chromatin binding and H3K27me2 deposition were attenuated and H3K27 acetylation at putative enhancers was increased in morulae and subsequently H3K27me3 failed to be deposited in blastocysts. These data reveal that facultative heterochromatin is established by PRC2.2-driven stepwise H3K27 methylation along pre-deposited H2AK119ub1 during early embryogenesis. Matsuwaka et al. show that JARID2-PRC2 initiates H3K27me2 deposition during the eight-cell-to-morula transition, following H2AK119 mono-ubiquitylation deposition. It is also required for the subsequent H3K27me3 deposition at the blastocyst stage.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 1","pages":"28-38"},"PeriodicalIF":17.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信