Nature Climate Change最新文献

筛选
英文 中文
Keeping emissions scenarios current 保持最新的排放情景
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2025-01-03 DOI: 10.1038/s41558-024-02200-1
Matthew G. Burgess, Ashley Dancer
{"title":"Keeping emissions scenarios current","authors":"Matthew G. Burgess, Ashley Dancer","doi":"10.1038/s41558-024-02200-1","DOIUrl":"10.1038/s41558-024-02200-1","url":null,"abstract":"Climate change research and policy rely on emissions scenarios to project future warming and its impacts. Now, a study highlights both progress and challenges to keeping key socioeconomic scenario assumptions up to date for the IPCC.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 2","pages":"131-132"},"PeriodicalIF":29.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy and socioeconomic system transformation through a decade of IPCC-assessed scenarios 通过ipcc评估的十年情景实现能源和社会经济系统转型
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2025-01-03 DOI: 10.1038/s41558-024-02198-6
D. J. van de Ven, S. Mittal, A. Nikas, G. Xexakis, A. Gambhir, L. Hermwille, P. Fragkos, W. Obergassel, M. Gonzalez-Eguino, F. Filippidou, I. Sognnaes, L. Clarke, G. P. Peters
{"title":"Energy and socioeconomic system transformation through a decade of IPCC-assessed scenarios","authors":"D. J. van de Ven, S. Mittal, A. Nikas, G. Xexakis, A. Gambhir, L. Hermwille, P. Fragkos, W. Obergassel, M. Gonzalez-Eguino, F. Filippidou, I. Sognnaes, L. Clarke, G. P. Peters","doi":"10.1038/s41558-024-02198-6","DOIUrl":"10.1038/s41558-024-02198-6","url":null,"abstract":"Charting future emissions pathways is a central tenet of IPCC assessment reports (AR), yet it is unclear how underlying drivers (including around policy and technology) have influenced the evolution of emissions pathways. Here we compare scenarios in AR5 and AR6 and find that scenarios without specific climate policies enforced have shifted lower in each scenario generation, owing to falling low-carbon technology costs and reduced expectations for economic growth, reducing fossil-fuel shares in energy and industry. Mitigation pathways consistent with 1.5–2 °C have seen increasing electrification rates and higher shares of variable renewables in electricity in more recent scenario generations, implying reduced reliance on coal, nuclear, bioenergy and carbon capture and storage, reflecting changing costs. Despite the shrinking carbon budget due to insufficient recent climate action, mitigation costs have not increased given more optimistic low-carbon technology cost projections. Moving forward, scenario producers must continually recalibrate to keep abreast of technology, policy and societal developments to remain policy relevant. Scenarios for mitigation pathways lay the foundation for IPCC reporting and provide guidelines for future climate actions. This Analysis compares all the scenarios included since the Fifth Assessment Report and discusses how the portfolio has evolved over the past decade and the driving factors behind these changes.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 2","pages":"218-226"},"PeriodicalIF":29.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictability of abrupt shifts in dryland ecosystem functioning 旱地生态系统功能突变的可预测性
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2025-01-03 DOI: 10.1038/s41558-024-02201-0
Paulo N. Bernardino, Wanda De Keersmaecker, Stéphanie Horion, Stefan Oehmcke, Fabian Gieseke, Rasmus Fensholt, Ruben Van De Kerchove, Stef Lhermitte, Christin Abel, Koenraad Van Meerbeek, Jan Verbesselt, Ben Somers
{"title":"Predictability of abrupt shifts in dryland ecosystem functioning","authors":"Paulo N. Bernardino, Wanda De Keersmaecker, Stéphanie Horion, Stefan Oehmcke, Fabian Gieseke, Rasmus Fensholt, Ruben Van De Kerchove, Stef Lhermitte, Christin Abel, Koenraad Van Meerbeek, Jan Verbesselt, Ben Somers","doi":"10.1038/s41558-024-02201-0","DOIUrl":"10.1038/s41558-024-02201-0","url":null,"abstract":"Climate change and human-induced land degradation threaten dryland ecosystems, vital to one-third of the global population and pivotal to inter-annual global carbon fluxes. Early warning systems are essential for guiding conservation, climate change mitigation and alleviating food insecurity in drylands. However, contemporary methods fail to provide large-scale early warnings effectively. Here we show that a machine learning-based approach can predict the probability of abrupt shifts in Sudano–Sahelian dryland vegetation functioning (75.1% accuracy; 76.6% precision) particularly where measures of resilience (temporal autocorrelation) are supplemented with proxies for vegetation and rainfall dynamics and other environmental factors. Regional-scale predictions for 2025 highlight a belt in the south of the study region with high probabilities of future shifts, largely linked to long-term rainfall trends. Our approach can provide valuable support for the conservation and sustainable use of dryland ecosystem services, particularly in the context of climate change projected drying trends. The authors develop a machine learning-based approach to derive abrupt shift probability in dryland ecosystem functioning in the Sudano–Sahel. They highlight areas with high probabilities of abrupt shifts in the near future (2025), which are linked to long-term rainfall trends.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"86-91"},"PeriodicalIF":29.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverging responses of terrestrial ecosystems to water stress after disturbances 干扰后陆地生态系统对水分胁迫的差异性响应
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2025-01-02 DOI: 10.1038/s41558-024-02191-z
Meng Liu, Josep Peñuelas, Anna T. Trugman, German Vargas G, Linqing Yang, William R. L. Anderegg
{"title":"Diverging responses of terrestrial ecosystems to water stress after disturbances","authors":"Meng Liu, Josep Peñuelas, Anna T. Trugman, German Vargas G, Linqing Yang, William R. L. Anderegg","doi":"10.1038/s41558-024-02191-z","DOIUrl":"10.1038/s41558-024-02191-z","url":null,"abstract":"Terrestrial ecosystems are major carbon (C) pools, sequestering ~20% of anthropogenic C emissions. However, increasing frequency and intensity of climate-sensitive disturbances (for example, drought and wildfire) threaten long-term C uptake. Although direct effects of disturbances are well-documented, indirect effects remain unknown. Here we quantify changes in the sensitivity of terrestrial gross primary production to water stress before and after severe droughts and fires. We find divergent changes across the globe, where dry regions have increased sensitivity, while wet regions have decreased sensitivity. Water availability, solar radiation, nutrient availability and biodiversity are the main drivers mediating these changes. Sensitivity takes ~4–5 years to recover after disturbances, but the increasing frequency of disturbances threatens this recovery. Our results reveal strong cross-system discrepancies in ecosystem responses to disturbances, highlighting the vulnerability of dryland ecosystems in future climates. Climate-sensitive disturbances, such as droughts and wildfires, impact terrestrial carbon uptake. Here the sensitivity of ecosystem productivity to disturbance is found to diverge between regions, with dryland ecosystems becoming particularly vulnerable under a warming climate.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"73-79"},"PeriodicalIF":29.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dryland ecosystems become more sensitive to water stress after disturbances 旱地生态系统在受到干扰后对水分压力更加敏感
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2025-01-02 DOI: 10.1038/s41558-024-02203-y
{"title":"Dryland ecosystems become more sensitive to water stress after disturbances","authors":"","doi":"10.1038/s41558-024-02203-y","DOIUrl":"10.1038/s41558-024-02203-y","url":null,"abstract":"Climate-sensitive disturbances impact ecosystem productivity and carbon uptake. We found that the sensitivity of ecosystem productivity to disturbances differs between regions, with dryland ecosystems becoming more sensitive to water stress after disturbances, whereas wet regions become less sensitive. On average, ecosystem sensitivity requires approximately five years to recover to pre-disturbance levels.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"27-28"},"PeriodicalIF":29.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different technology packages for aluminium smelters worldwide to deliver the 1.5 °C target 全球铝冶炼厂采用不同的技术包来实现1.5°C的目标
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2025-01-02 DOI: 10.1038/s41558-024-02193-x
Chang Tan, Xiang Yu, Dan Li, Tianyang Lei, Qi Hao, Dabo Guan
{"title":"Different technology packages for aluminium smelters worldwide to deliver the 1.5 °C target","authors":"Chang Tan, Xiang Yu, Dan Li, Tianyang Lei, Qi Hao, Dabo Guan","doi":"10.1038/s41558-024-02193-x","DOIUrl":"10.1038/s41558-024-02193-x","url":null,"abstract":"Production of aluminium, one of the most energy-intensive metals, is challenging for mitigation efforts. Regional mitigation strategies often neglect the emissions patterns of individual smelters and fail to guide aluminium producers’ efforts to reduce GHG emissions. Here we build a global aluminium GHG emissions inventory (CEADs-AGE), which includes 249 aluminium smelters, representing 98% of global primary aluminium production and 280 associated fossil fuel-based captive power units. We find, despite the installation of more efficient and higher amperage cells, that the share of aluminium production powered by fossil fuel-based captive power units increased from 37% to 49% between 2012 and 2021. Retiring fossil fuel-based captive power plants 10 years ahead of schedule could reduce emissions intensity by 5.0–10.5 tCO2e per tonne of aluminium for dependent smelters. At least 18% of smelting capacity by 2040 and 67% by 2050 must be retrofitted with inert anode technology to achieve net-zero targets. The aluminium production process is energy intensive and individual smelters often depend on associated fossil fuel-based captive power units. With detailed global facility-level data, this research highlights the importance of early retirement of fossil fuel plants and retrofitting with inert anodes.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"51-58"},"PeriodicalIF":29.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02193-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the technical dialogue of the first global stocktake from process to findings 第一次全球评估从过程到结果的技术对话导航
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2024-12-30 DOI: 10.1038/s41558-024-02220-x
Harald Winkler, Farhan Akhtar
{"title":"Navigating the technical dialogue of the first global stocktake from process to findings","authors":"Harald Winkler, Farhan Akhtar","doi":"10.1038/s41558-024-02220-x","DOIUrl":"10.1038/s41558-024-02220-x","url":null,"abstract":"The first global stocktake under the Paris Agreement to assess implementation and progress towards achieving its long-term goals was completed in 2023. Here we reflect on the process and findings of the technical dialogue, based on our experience as co-facilitators, and describe innovations in the process, technical findings and evidence-based policy-making following a learning-by-doing approach. We point to the technical dialogue’s 17 key findings, across the topics of context, mitigation, response measures, adaptation, loss and damage, means of implementation and support, and finance flows, which were informed by the best available science and equity considerations. We also consider how the key findings informed the political outcome of the global stocktake and highlight the importance of the technical dialogue for ratcheting up climate ambition across all topics. The first global stocktake marks an important step in enabling Parties to the Paris Agreement to enhance their climate actions and support with the aim of achieving long-term goals. Two co-facilitators of the technical dialogue discuss the process, findings, relationship with political outcomes and implications for future negotiations.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"37-43"},"PeriodicalIF":29.6,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tourism stepping up climate action 旅游业促进气候行动
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2024-12-27 DOI: 10.1038/s41558-024-02231-8
Bronwyn Wake
{"title":"Tourism stepping up climate action","authors":"Bronwyn Wake","doi":"10.1038/s41558-024-02231-8","DOIUrl":"10.1038/s41558-024-02231-8","url":null,"abstract":"","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 2","pages":"133-133"},"PeriodicalIF":29.6,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Actions before agreement 达成协议前的行动
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2024-12-23 DOI: 10.1038/s41558-024-02223-8
{"title":"Actions before agreement","authors":"","doi":"10.1038/s41558-024-02223-8","DOIUrl":"10.1038/s41558-024-02223-8","url":null,"abstract":"The recent COP29 barely reached a new climate finance target that leaves all parties wholeheartedly satisfied. However, even without perfect agreement, climate actions should not be delayed.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"1-1"},"PeriodicalIF":29.6,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02223-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind changes enhance ENSO 风的变化增强ENSO
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2024-12-23 DOI: 10.1038/s41558-024-02228-3
Bronwyn Wake
{"title":"Wind changes enhance ENSO","authors":"Bronwyn Wake","doi":"10.1038/s41558-024-02228-3","DOIUrl":"10.1038/s41558-024-02228-3","url":null,"abstract":"","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 1","pages":"13-13"},"PeriodicalIF":29.6,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信