Peijin Li, Rongqi Zhu, Haewon McJeon, Edward Byers, Peijie Zhou, Yang Ou
{"title":"Using deep learning to generate key variables in global mitigation scenarios","authors":"Peijin Li, Rongqi Zhu, Haewon McJeon, Edward Byers, Peijie Zhou, Yang Ou","doi":"10.1038/s41558-025-02352-8","DOIUrl":null,"url":null,"abstract":"<p>Integrated assessment models (IAMs) are the dominant tools for projecting mitigation scenarios. However, IAM-based scenarios often face challenges such as modelling biases and large computational burden. Here we develop a deep learning framework to generate key variables through synthetic mitigation scenarios aligned with the Sixth Assessment Report (AR6) Scenarios Database. By analysing 1,202 scenarios from a diverse set of IAMs, we select key drivers that enable a more detailed sectoral representation. Next, we trained three generative deep learning models to produce 30,000 synthetic scenarios at low computational cost across various IPCC AR6 climate categories, replicating variable distributions and correlations while also demonstrating physical consistency in power sector variables through internal validation checks. We found that the variational autoencoder achieved the highest label transferring accuracy among three frameworks. This study illustrates the potential of deep learning to complement IAM approaches and provides a basis for handling complex mitigation scenario generation tasks.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"5 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02352-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated assessment models (IAMs) are the dominant tools for projecting mitigation scenarios. However, IAM-based scenarios often face challenges such as modelling biases and large computational burden. Here we develop a deep learning framework to generate key variables through synthetic mitigation scenarios aligned with the Sixth Assessment Report (AR6) Scenarios Database. By analysing 1,202 scenarios from a diverse set of IAMs, we select key drivers that enable a more detailed sectoral representation. Next, we trained three generative deep learning models to produce 30,000 synthetic scenarios at low computational cost across various IPCC AR6 climate categories, replicating variable distributions and correlations while also demonstrating physical consistency in power sector variables through internal validation checks. We found that the variational autoencoder achieved the highest label transferring accuracy among three frameworks. This study illustrates the potential of deep learning to complement IAM approaches and provides a basis for handling complex mitigation scenario generation tasks.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.